1
|
Lagerwall JPF. The good, the bad and the ugly faces of cyanobiphenyl mesogens in selected tracks of fundamental and applied liquid crystal research. LIQUID CRYSTALS 2023; 51:1296-1310. [PMID: 39563695 PMCID: PMC11575653 DOI: 10.1080/02678292.2023.2292621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 11/21/2024]
Abstract
Liquid crystal-forming cyanobiphenyls are truly extraordinary molecules that have had an enormous impact on liquid crystal research and applications since they were first synthesised. This impact is, on the one hand, due to the exceptionally convenient physical properties of the main characters, 5CB and 8CB, allowing easy experiments at room temperature, as well as their commercial availability at reasonable cost. On the other hand, the cyanobiphenyl chemical structure leads to some quite peculiar characteristics in terms of organisation at the molecular scale, which are sometimes well recognised and even utilised, but often the awareness of these peculiarities is not strong. This perspective article reviews the use of cyanobiphenyls in making liquid crystal shells and liquid crystal core fibres, in sensing, as a medium for simultaneously aligning and dispersing carbon nanotubes, and as highly useful solvents for reactive mesogens that can be polymerised into anisotropic networks. This choice is very much motivated by how cyanobiphenyls have impacted our group's research throughout the years, which is the basis for the examples I provide. Nevertheless, I believe they serve well to illustrate the immense usefulness of cyanobiphenyls in innovating research and applications related to liquid crystals.
Collapse
Affiliation(s)
- Jan P F Lagerwall
- Experimental Soft Matter Physics group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
2
|
Geng Y, Lagerwall JP. Multiresponsive Cylindrically Symmetric Cholesteric Liquid Crystal Elastomer Fibers Templated by Tubular Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301414. [PMID: 37186075 PMCID: PMC10323659 DOI: 10.1002/advs.202301414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/02/2023] [Indexed: 05/17/2023]
Abstract
Cylindrically symmetric cholesteric liquid crystal elastomer (CLCE) fibers templated by tubular confinement are reported, displaying mechanochromic, thermochromic, and thermomechanical responses. The synthesis inside a sacrificial tube secures radial orientation of the cholesteric helix, and the ground state retroreflection wavelength is easily tuned throughout the visible spectrum or into the near-infrared by varying the concentration of a chiral dopant. The fibers display continuous, repeatable, and quantitatively predictable mechanochromic response, reaching a blue shift of more than -220 nm for 180% elongation. The cylindrical symmetry renders the response identical in all directions perpendicular to the fiber axis, making them exceptionally useful for monitoring complex strains, as demonstrated in revealing local strain during tying of different knots. The CLCE reflection color can be revealed with high contrast against any background by taking advantage of the circularly polarized reflection. Upon heating, the fibers respond-fully reversibly-with red shift and radial expansion/axial contraction. However, there is no transition to an isotropic state, confirming a largely forgotten theoretical prediction by de Gennes. These fibers and the easy way of making them may open new windows for large-scale application in advanced wearable technology and beyond.
Collapse
Affiliation(s)
- Yong Geng
- Experimental Soft Matter Physics groupDepartment of Physics and Materials ScienceUniversity of LuxembourgL‐1511LuxembourgLuxembourg
| | - Jan P.F. Lagerwall
- Experimental Soft Matter Physics groupDepartment of Physics and Materials ScienceUniversity of LuxembourgL‐1511LuxembourgLuxembourg
| |
Collapse
|
3
|
Molco M, Keilin A, Lunken A, Ziv Sharabani S, Chkhaidze M, Edelstein-Pardo N, Reuveni T, Sitt A. Controlling Nano-to-Microscale Multilevel Architecture in Polymeric Microfibers through Polymerization-Induced Spontaneous Phase Separation. Polymers (Basel) 2023; 15:polym15112537. [PMID: 37299336 DOI: 10.3390/polym15112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Hierarchically structured polymeric fibers, composed of structural nanoscale motifs that assemble into a microscale fiber are frequently found in natural fibers including cellulose and silk. The creation of synthetic fibers with nano-to-microscale hierarchical structures represents a promising avenue for the development of novel fabrics with distinctive physical, chemical, and mechanical characteristics. In this work, we introduce a novel approach for creating polyamine-based core-sheath microfibers with controlled hierarchical architectures. This approach involves a polymerization-induced spontaneous phase separation and subsequent chemical fixation. Through the use of various polyamines, the phase separation process can be manipulated to produce fibers with diverse porous core architectures, ranging from densely packed nanospheres to segmented "bamboo-stem" morphology. Moreover, the nitrogen-rich surface of the core enables both the chemisorption of heavy metals and the physisorption of proteins and enzymes. Our method offers a new set of tools for the production of polymeric fibers with novel hierarchical morphologies, which has a high potential for a wide range of applications such as filtering, separation, and catalysis.
Collapse
Affiliation(s)
- Maya Molco
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Keilin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adira Lunken
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shiran Ziv Sharabani
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mark Chkhaidze
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nicole Edelstein-Pardo
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tomer Reuveni
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Sitt
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional Fiber Membranes with Antibacterial Properties for Face Masks. ADVANCED FIBER MATERIALS 2023; 5:1-15. [PMID: 37361107 PMCID: PMC10189208 DOI: 10.1007/s42765-023-00291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 06/28/2023]
Abstract
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80-180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00291-7.
Collapse
Affiliation(s)
- Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Gordon Herwig
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Fabian Itel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
5
|
Najiya N, Popov N, Jampani VSR, Lagerwall JPF. Continuous Flow Microfluidic Production of Arbitrarily Long Tubular Liquid Crystal Elastomer Peristaltic Pump Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204693. [PMID: 36494179 DOI: 10.1002/smll.202204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
While liquid crystal elastomers (LCEs) are ideal materials for soft-robotic actuators, filling the role of muscle and shape-defining material simultaneously, it is non-trivial to give them ground state shapes beyond simple sheets or fibers. Here tubular LCE actuators scalable to arbitrary length are produced using a continuous three-phase coaxial flow microfluidic process. By pumping an oligomeric precursor solution between inner and outer aqueous phases in a cylindrically symmetric nested capillary set-up, and by reducing the interfacial tension to negligible values using surfactants adapted to each phase, the tubular liquid flow is stabilized over distances more than 200 times the diameter or 2000 times the thickness. In situ photocrosslinking of the middle phase turns it into an LCE network that is flow-aligned by the shear gradient over the phase. The reversible actuation of the tubes upon heating yields a reduction of the interior space, pumping out enclosed fluid, and the relaxation upon cooling leads to the fluid being sucked back in. By moving a local heat source along the tube, it acts as a peristaltic pump. It is proposed that the tubes could, pending functionalization for light-triggered actuation, function as active synthetic vasculature in biological contexts.
Collapse
Affiliation(s)
- Najiya Najiya
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Nikolay Popov
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Venkata Subba Rao Jampani
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
- Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Jan P F Lagerwall
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| |
Collapse
|