1
|
Shenoy SA, Chaithanya K, Dayal P. Shear-induced dynamics of an active Belousov-Zhabotinsky droplet. SOFT MATTER 2025; 21:1957-1969. [PMID: 39967401 DOI: 10.1039/d4sm01464b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Controlled navigation of self-propelled active matter in complex biological environments has remained a significant challenge in engineering owing to a multitude of interactions that persist in the process. Active droplets, being some of the several synthetic active matters, have garnered significant attention owing to their ability to exhibit dynamic shape changes, self-sustained motion, interact with external stimuli such as flows, and mimic biological active matter. Here, we explore the dynamics of a self-propelled active droplet powered by the oscillatory Belousov-Zhabotinsky (BZ) reaction in the presence of a shear flow. We adapt a multicomponent lattice Boltzmann method (LBM) in conjunction with the phase-field model to simulate the droplet's interaction with the surrounding fluid. We unravel the collective effect of droplet deformation, reaction kinetics, and strength of the surrounding shear flow on droplet dynamics. Our findings depict that the shear flow disrupts the initial isotropic surface tension, and produces concentration nucleation spots in the droplet. The asymmetry thus generated produces Marangoni flow that ultimately propels the droplet. Our findings provide valuable insights into the mechanisms governing active droplet behavior and open new avenues for designing controllable synthetic active matter systems with potential applications in microfluidics, targeted delivery, and biomimetic technologies. In addition, our framework can potentially be integrated with the physics-informed machine learning framework to develop more efficient mesh-free methods.
Collapse
Affiliation(s)
- Shreyas A Shenoy
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| | - Kvs Chaithanya
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| | - Pratyush Dayal
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| |
Collapse
|
2
|
Cheng K, Xu W, Wu H, Chen B, Yang H, Cui Z, Yu H, Cheng Z, Hu Y, Li J, Jiang H, Chu J, Wu D. Light-Triggered Droplet Gating Strategy Based on Janus Membrane Fabricated by Femtosecond Laser. ACS NANO 2024; 18:32481-32490. [PMID: 39533971 DOI: 10.1021/acsnano.4c08108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The characteristics of the directed transport of liquids based on Janus membranes play a crucial role in practical applications in energy, materials, physics, chemistry, medicine, biology, and other fields. Although extensive progress has been made, it is still difficult to realize the accurate controllability of liquid directional transmembrane transport. The current gating strategies for the directed transport of liquids based on Janus membranes still have some limitations: (a) using magnetic fluid may cause contamination due to the addition of new substances and (b) utilizing hydrophobicity/hydrophilicity conversion of titanium dioxide requires a long switching time (over 30 min). Herein, a strategy is proposed to precisely control liquid directional transport by altering the wettability of droplets on Janus films prepared by a femtosecond laser through photothermal effects. Infrared laser irradiation on Janus film coated with CNTs can effectively convert light energy into thermal energy, rapidly increase the surface temperature of Janus film, and change the wettability of the liquid on the film. Liquid transmembrane directional transport can be achieved within a few seconds without contaminating the transported liquid. The proposed gating strategy can enable the application of Janus membranes in various scenarios such as microchemical reactions, biological cell culture, and interface self-propulsion.
Collapse
Affiliation(s)
- Kangru Cheng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenlong Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bowen Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haoxiang Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zehang Cui
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hao Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zilong Cheng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
3
|
Kumar P, Dwivedi P, Ashraf S, Pillai D, Mangal R. Motility and pairwise interactions of chemically active droplets in one-dimensional confinement. Phys Rev E 2024; 110:024612. [PMID: 39295064 DOI: 10.1103/physreve.110.024612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024]
Abstract
Self-propelled droplets serve as ideal model systems to delve deeper into understanding the motion of biological microswimmers by simulating their motility. Biological microorganisms are renowned for showcasing a diverse array of dynamic swimming behaviors when confronted with physical constraints. This study aims to elucidate the impact of physical constraints on swimming characteristics of biological microorganisms. To achieve this, we present observations on the individual and pairwise behavior of micellar solubilized self-propelled 4-cyano-4'-pentyl-biphenyl (5CB) oil droplets in a square capillary channel filled with a surfactant trimethyl ammonium bromide aqueous solution. To explore the effect of the underlying Péclet number of the swimming droplets, the study is also performed in the presence of additives such as high molecular weight polymer polyethylene oxide and molecular solute glycerol. The capillary confinement restricts droplet to predominantly one-dimensional motion, albeit with noticeable differences in their motion across the three scenarios. Through a characterization of the chemical and hydrodynamic flow fields surrounding the droplets, we illustrate that the modification of the droplets' chemical field due to confinement varies significantly based on the underlying differences in the Péclet number in these cases. This alteration in the chemical field distribution notably affects the individual droplets' motion. Moreover, these distinct chemical field interactions between the droplets also lead to variations in their pairwise motion, ranging from behaviors like chasing to scattering.
Collapse
|
4
|
Rajput V, Dayal P. Energy and power characteristics of nanocatalyzed Belousov-Zhabotinsky reactions via bifurcation analyses. Phys Rev E 2023; 108:064211. [PMID: 38243536 DOI: 10.1103/physreve.108.064211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
Active stimuli-responsive materials, intrinsically powered by chemical reactions, have immense capabilities that can be harnessed for designing synthetic systems for a variety of biomimetic applications. It goes without saying that the key aspect involved in the designing of such systems is to accurately estimate the amount of energy and power available for transduction through various mechanisms. Belousov-Zhabotinsky (BZ) reactions are dynamical systems, which exhibit self-sustained nonlinear chemical oscillations, as their catalyst undergoes periodic redox cycles in the presence of reagents. The unique feature of BZ reaction based active systems is that they can continuously perform mechanical work by transducing energy from sustained chemical oscillations. The objective of our work is to use bifurcation analyses to identify oscillatory regimes and quantify energy-power characteristics of the BZ reaction based on nanocatalyst activity and BZ reaction formulations. Our approach involves not only the computation of higher order Lyapunov and frequency coefficients but also Hamiltonian functions, through normal form reduction of the kinetic model of the BZ reaction. Ultimately, using these calculations, we determine amplitude, frequency, and energy-power densities, as a function of the nanocatalysts' activity and BZ formulations. As normal form representations are applicable to any dynamical system, we believe that our framework can be extended to other self-sustained active systems, including systems based on stimuli-responsive materials.
Collapse
Affiliation(s)
- Vandana Rajput
- Polymer Engineering Research Laboratory (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India
| | - Pratyush Dayal
- Polymer Engineering Research Laboratory (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382055, India
| |
Collapse
|
5
|
Chaithanya KVS, Shenoy SA, Dayal P. Hydrodynamics of a confined active Belousov-Zhabotinsky droplet. Phys Rev E 2022; 106:065103. [PMID: 36671180 DOI: 10.1103/physreve.106.065103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Self-sustained locomotion of synthetic droplet swimmers has been of great interest due to their ability to mimic the behavior of biological swimmers. Here we harness the Belousov-Zhabotinsky (BZ) reaction to induce Marangoni stresses on the fluid-droplet interface and elucidate the spontaneous locomotion of active BZ droplets in a confined two-dimensional channel. Our approach employs the lattice Boltzmann method to simulate a coupled system of multiphase hydrodynamics and BZ-reaction kinetics. Our investigation reveals the mechanism underlying the propulsion of active BZ droplets, in terms of convective and diffusive fluxes and deformation of the droplets. Furthermore, we demonstrate that by manipulating the degree of confinement, strength, and nature of coupling between surface tension and active species' concentration, the motion of the BZ droplet can be directed. In addition, we are able to capture two different kinds of droplet behaviors, namely, sustained and stationary, and establish conditions for the sustained long-time motion. We envisage that our findings can be used not only to understand the mechanics of biological swimmers but also to design reaction-driven self-propelled systems for a variety of biomimetic applications.
Collapse
Affiliation(s)
- K V S Chaithanya
- Polymer Engineering Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
| | - Shreyas A Shenoy
- Polymer Engineering Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
| | - Pratyush Dayal
- Polymer Engineering Research Laboratory, Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382055, India
| |
Collapse
|