1
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Exploiting the Fc base of IgG antibodies to create functional nanoparticle conjugates. Sci Rep 2024; 14:14832. [PMID: 38937649 PMCID: PMC11211340 DOI: 10.1038/s41598-024-65822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
The structures of the Fc base of various IgG antibodies have been examined with a view to understanding how this region can be used to conjugate IgG to nanoparticles. The base structure is found to be largely consistent across a range of species and subtypes, comprising a hydrophobic region surrounded by hydrophilic residues, some of which are charged at physiological conditions. In addition, atomistic Molecular Dynamics simulations were performed to explore how model nanoparticles interact with the base using neutral and negatively charged gold nanoparticles. Both types of nanoparticle interacted readily with the base, leading to an adaptation of the antibody base surface to enhance the interactions. Furthermore, these interactions left the rest of the domain at the base of the Fc region structurally intact. This implies that coupling nanoparticles to the base of an IgG molecule is both feasible and desirable, since it leaves the antibody free to interact with its surroundings so that antigen-binding functionality can be retained. These results will therefore help guide future attempts to develop new nanotechnologies that exploit the unique properties of both antibodies and nanoparticles.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, UK.
- SiMologics Ltd. The Enterprise Hub, Level 6 Graham Hills Building, 50 Richmond Street, Glasgow, G1 1XP, UK.
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK.
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
- Archie-West, Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
2
|
Criado-Gonzalez M, Peñas MI, Barbault F, Müller AJ, Boulmedais F, Hernández R. Salt-induced Fmoc-tripeptide supramolecular hydrogels: a combined experimental and computational study of the self-assembly. NANOSCALE 2024; 16:9887-9898. [PMID: 38683577 DOI: 10.1039/d4nr00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Delving into the mechanism behind the molecular interactions at the atomic level of short-sequence peptides plays a key role in the development of nanomaterials with specific structure-property-function relationships from a bottom-up perspective. Due to their poor water solubility, the self-assembly of Fmoc-bearing peptides is usually induced by dissolution in an organic solvent, followed by a dilution step in water, pH changes, and/or a heating-cooling process. Herein, we report a straightforward methodology for the gelation of Fmoc-FFpY (F: phenylalanine; Y: tyrosine; and p: PO42-), a negatively charged tripeptide, in NaCl solution. The electrostatic interactions between Fmoc-FFpY and Na+ ions give rise to different nanofibrillar hydrogels with rheological properties and nanofiber sizes modulated by the NaCl concentration in pure aqueous media. Initiated by the electrostatic interactions between the peptide phosphate groups and the Na+ ions, the peptide self-assembly is stabilized thanks to hydrogen bonds between the peptide backbones and the π-π stacking of aromatic Fmoc and phenyl units. The hydrogels showed self-healing and thermo-responsive properties for potential biomedical applications. Molecular dynamics simulations from systems devoid of prior training not only confirm the aggregation of peptides at a critical salt concentration and the different interactions involved, but also corroborate the secondary structure of the hydrogels at the microsecond timescale. It is worth highlighting the remarkable achievement of reproducing the morphological behavior of the hydrogels using atomistic simulations. To our knowledge, this study is the first to report such a correspondence.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Mario Iván Peñas
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | | | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 67034 Strasbourg, France
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
3
|
Azimzadeh B, Nicholson LK, Martínez CE. In the presence of the other: How glyphosate and peptide molecules alter the dynamics of sorption on goethite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169264. [PMID: 38092207 DOI: 10.1016/j.scitotenv.2023.169264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The interactions with soil mineral surfaces are among the factors that determine the mobility and bioavailability of organic contaminants and of nutrients present in dissolved organic matter (DOM) in soil and aquatic environments. While most studies focus on high molar mass organic matter fractions (e.g., humic and fulvic acids), very few studies investigate the impact of DOM constituents in competitive sorption. Here we assess the sorption behavior of a heavily used herbicide (i.e., glyphosate) and a component of DOM (i.e., a peptide) at the water/goethite interface, inclusive of potential glyphosate-peptide interactions. We used in-situ ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectroscopy to study sorption kinetics and mechanisms of interaction as well as conformational changes to the secondary structure of the peptide. NMR (nuclear magnetic resonance) spectroscopy was used to assess the level of interaction between glyphosate and the peptide and changes to the peptide' secondary structure in solution. For the first time, we illustrate competition for sorption sites results in co-sorption of glyphosate and peptide molecules that affects the extent, kinetics, and mechanism of interaction of each with the surface. In the presence of the peptide, the formation of outer-sphere glyphosate-goethite complexes is favored albeit inner-sphere glyphosate-goethite bonds (i.e., POFe) are still formed. The presence of glyphosate induces secondary structural shifts of the sorbed peptide that maximizes the formation of H-bonds with the goethite surface. However, glyphosate and the peptide do not seem to interact with one another in solution nor at the goethite surface upon sorption. The results of this work highlight potential consequences of competition for sorption sites, for example the transport of organic contaminants and nutrient-rich (i.e., nitrogen) DOM components in relevant environmental systems. Predicting the rate and extent with which organic pollutants are removed from solution by a given solid is also one of the most critical factors for the design of effective sorption systems in engineering applications.
Collapse
Affiliation(s)
- Behrooz Azimzadeh
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Barbault F, Brémond E, Rey J, Tufféry P, Maurel F. DockSurf: A Molecular Modeling Software for the Prediction of Protein/Surface Adhesion. J Chem Inf Model 2023; 63:5220-5231. [PMID: 37579187 DOI: 10.1021/acs.jcim.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The elucidation of structural interfaces between proteins and inorganic surfaces is a crucial aspect of bionanotechnology development. Despite its significance, the interfacial structures between proteins and metallic surfaces are yet to be fully understood, and the lack of experimental investigation has impeded the development of many devices. To overcome this limitation, we suggest considering the generation of protein/surface structures as a molecular docking problem with a homogenous plan as the target. To this extent, we propose a new software, DockSurf, which aims to quickly propose reliable protein/surface structures. Our approach considers the conformational exploration with Euler's angles, which provide a cartography instead of a unique structure. Interaction energies were derived from quantum mechanics computations for a set of small molecules that describe protein atom types and implemented in a Derjaguin, Landau, Verwey, and Overbeek potential for the consideration of large systems such as proteins. The validation of DockSurf software was conducted with molecular dynamics for corona proteins with gold surfaces and provided enthusiastic results. This software is implemented in the RPBS platform to facilitate widespread access to the scientific community.
Collapse
Affiliation(s)
| | - Eric Brémond
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Julien Rey
- Université Paris Cité, CNRS UMR 8251, INSERM U1133, RPBS, 75205 Paris, France
| | - Pierre Tufféry
- Université Paris Cité, CNRS UMR 8251, INSERM U1133, RPBS, 75205 Paris, France
| | | |
Collapse
|