1
|
Sarkar AP, Sahu R, Giri S, Anoop A, Reddy SK. Exploring the Conformational Space of a Sulfonyl-Based Ionic Liquid on Platinum-Based Mono and Bimetallic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3187-3198. [PMID: 39878339 DOI: 10.1021/acs.langmuir.4c03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Understanding the arrangement of ionic liquids at the interface and their interactions with the surface is crucial for enhancing selectivity in heterogeneous reactions for practical applications. In this study, we investigate the nature of the adsorption and structural orientations of a sulfonyl-based ionic liquid on platinum-based mono- and bimetallic (111) surfaces employing replica exchange molecular dynamics and first-principles density functional theory calculations. More than 30 confirmations of the ionic liquid are identified on both monometallic and bimetallic surfaces. In addition to adsorption energies, factors such as dynamics of ionic liquids, molecule-surface distances, and charge transfer analyses are found to be important indicators for understanding adsorption phenomena. The sulfonyl anion exhibits contrasting behavior on the two surfaces, showing a preference for chemisorption on the monometallic surface, while the pyrrolidinium cation is physisorbed on both metal surfaces. Both metal surfaces are negatively charged primarily because of charge transfer from the sulfonyl anion. The analysis of the orientational preference reveals a nearly flat orientation of the cation on the monometallic surface, while a tilted orientation is observed on the bimetallic surface.
Collapse
Affiliation(s)
- Arka Prava Sarkar
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Rahul Sahu
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sandip Giri
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Anakuthil Anoop
- School of Digital Sciences, Digital University, Kerala 695317, India
| | - Sandeep K Reddy
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Tavakol M, Voïtchovsky K. Water and ions in electrified silica nano-pores: a molecular dynamics study. Phys Chem Chem Phys 2024; 26:22062-22072. [PMID: 39113575 DOI: 10.1039/d4cp00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solid-liquid interfaces (SLIs) are ubiquitous in science and technology from the development of energy storage devices to the chemical reactions occurring in the biological milieu. In systems involving aqueous saline solutions as the liquid, both the water and the ions are routinely exposed to an electric field, whether the field is externally applied, or originating from the natural surface charges of the solid. In the current study a molecular dynamics (MD) framework is developed to study the effect of an applied voltage on the behaviour of ionic solutions located in a ∼7 nm pore between two uncharged hydrophilic silica slabs. We systematically investigate the dielectric properties of the solution and the organisation of the water and ions as a function of salt concentration. In pure water, the interplay between interfacial hydrogen bonds and the applied field can induce a significant reorganisation of the water orientation and densification at the interface. In saline solutions, at low concentrations and voltages the interface dominates the whole system due to the extended Debye length resulting in a dielectric constant lower than that for the bulk solution. An increase in salt concentration or voltage brings about more localized interfacial effects resulting in dielectric properties closer to that of the bulk solution. This suggests the possibility of tailoring the system to achieve the desired dielectric properties. For example, at a specific salt concentration, interfacial effects can locally increase the dielectric constant, something that could be exploited for energy storage.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Physics Department, Durham University, Durham DH1 3LE, UK.
| | | |
Collapse
|
3
|
Li Q, Zhu G, Liu Z, Xu J. Molecular dynamics simulation studies on the ionic liquid N-butylpyridinium tetrafluoroborate on the gold surface. Heliyon 2024; 10:e32710. [PMID: 38975103 PMCID: PMC11225740 DOI: 10.1016/j.heliyon.2024.e32710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The study of solid/liquid interface is of great significance for understanding various phenomena such as the nanostructure of the interface, liquid wetting, crystal growth and nucleation. In this work, the nanostructure of the pyridinium ionic liquid [BPy]BF4 on different gold surfaces was studied by molecular dynamics simulation. The results indicate that the density of the ionic liquids near the gold surface is significantly higher than that in the bulk phase. Cation's tail (the alkyl chain) orients parallel to the surface under all studied conditions. Cation's head (the pyridine ring) orientation varies from parallel to perpendicular, which depends on the temperature and corrugation of the Au(hkl) surface. Interestingly, analysis of simulated mass and number densities revealed that surface corrugation randomizes the cations packing. On smooth Au(111) and Au(100) surfaces, parallel and perpendicular orientations are well distinguished for densely packed cations. While on corrugated Au(110), cations' packing density and order are decreased. Overall, this study explores the adsorption effect of the gold surface on ionic liquids, providing some valuable insights into their behavior on the solid/liquid interface.
Collapse
Affiliation(s)
- Qiang Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
- Faculty of Engineering, Anhui Sanlian University, Hefei, 230601, China
| | - Guanglai Zhu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Zhicong Liu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Jianqiang Xu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
4
|
Tu YJ, Peng ST. Influence of surface nanostructure-induced innermost ion structuring on capacitance of carbon/ionic liquid double layers. Phys Chem Chem Phys 2024; 26:5932-5946. [PMID: 38299635 DOI: 10.1039/d3cp05617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Ionic liquids have drawn great interest as electrolytes for energy storage applications in which they form characteristic electrical double layers at electrode interfaces. For ionic liquids at carbon electrode interfaces, their double layers are subject to nanoscale structuring of the electrode surface, involving altered ion structure and interactions that significantly influence the double layer capacitance. In this regard, we investigate the modulation of ionic liquid double layers by electrode surface roughness and the resulting effects on the ion structure, interaction, and capacitance. We performed fixed voltage molecular dynamics simulations to compute the differential capacitance profiles for the ionic liquids [BMIm+][TFSI-] and [BMIm+][FSI-] at model carbon electrode interfaces with the surface channel width at subnanometer and nanometer scales. We find that both [BMIm+][TFSI-] and [BMIm+][FSI-] exhibit enhanced differential capacitance for the electrode surface with a subnanometer channel width relative to the flat graphene surface, but the most pronounced enhancements for these two ionic liquids unexpectedly appear at different applied potential regimes. For [BMIm+][TFSI-], the nanostructured electrode shows significant enhancement of capacitance at high positive potential. For [BMIm+][FSI-], on the other hand, this enhancement is small at positive polarization but noticeable at low negative potential. We demonstrate that differences in these capacitance trends is due to differences in ion correlation that arise from a steric constraint of nanostructured electrode surface on the voltage-mediated restructuring of ions closest to the electrode interface. For example, the TFSI- and FSI- anions tend to structure with their charged and nonpolar groups in contact with the positive electrode surface when the constraint on these close-contact anions is relaxed. This anion structuring largely retains the cation association near the nanostructured electrode, resulting in only a slight increase in capacitance at positive polarization. Our simulations highlight the sensitive dependence of the innermost ion structure on the electrode surface nanostructure and applied voltage and the resulting influence on ion correlation and capacitance of ionic liquid double layers.
Collapse
Affiliation(s)
- Yi-Jung Tu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, 54561, Taiwan.
| | - Sheng-Ting Peng
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, 54561, Taiwan.
| |
Collapse
|
5
|
Prakash K, Sathian SP. Temperature-dependent differential capacitance of an ionic liquid-graphene-based supercapacitor. Phys Chem Chem Phys 2024; 26:4657-4667. [PMID: 38251719 DOI: 10.1039/d3cp05039d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
One of the critical factors affecting the performance of supercapacitors is thermal management. The design of supercapacitors that operate across a broad temperature range and at high charge/discharge rates necessitates understanding the correlation of the molecular characteristics of the device (such as interfacial structure and inter-ionic and ion-electrode interactions) with its macroscopic properties. In this study, we use molecular dynamics (MD) simulations to investigate the influence of Joule heating on the structure and dynamics of the ionic liquid (IL)/graphite-based supercapacitors. The temperature-dependent electrical double layer (EDL) and differential capacitance-potential (CD-V) curves of two different ([Bmim][BF4] and [Bmim][PF6]) IL-graphene pairs were studied under various thermal gradients. For the [Bmim][BF4] system, the differential capacitance curves transition from 'U' to bell shape under an applied thermal gradient (∇T) in the range from 3.3 K nm-1 to 16.7 K nm-1. Whereas in [Bmim][PF6], we find a positive dependence of differential capacitance with ∇T with a U-shaped CD-V curve. We examine changes in the EDL structure and screening potential (ϕ(z)) as a function of ∇T and correlate them with the trends observed in the CD-V curve. The identified correlation between the interfacial charge density and differential capacitance with thermal gradient would be helpful for the molecular design of the IL-electrode interface in supercapacitors or other chemical engineering applications.
Collapse
Affiliation(s)
- Kiran Prakash
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Sarith P Sathian
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
6
|
Yadav Y, Singh SP. In Situ Measurement of Effective Gate Bias Voltage in Ionic Liquid-Gated Organic Field-Effect Transistors: Exploring Intrinsic Performance and Trap Density of States. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48431-48441. [PMID: 37811786 DOI: 10.1021/acsami.3c07898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Electric double layer (EDL)-mediated transistors with ionic liquid (IL) gating have garnered substantial interest due to their exceptional properties, such as high transconductance and low-voltage operation, positioning them as promising candidates for organic electronics. In this study, we present an in situ measurement of effective gate bias voltage (VGS,eff) in IL-gated organic field-effect transistors (IL-OFETs) using a modified current-voltage measurement configuration. The results reveal a significant deviation between VGS,eff and the applied gate bias (VGS,app), indicating that the EDL at the gate/IL interface screens the applied voltage. It is observed that the screening effect varies depending on the specific cation and anion present in the IL. The evaluation of VGS,eff plays a pivotal role in understanding the intrinsic behavior of IL-OFETs and addresses the challenges associated with accurate performance assessment. Inherently, IL-OFETs demonstrate high transconductance, achieving values of approximately 9 mS while operating at a low threshold voltage of around 0.55 V. Through the acquisition of VGS,eff, we have successfully addressed the limitations impeding the numerical estimation of the trap density of states (trap DOS) in IL-OFETs. Remarkably, our calculations reveal an exceptionally low density of deep traps, which serves as a crucial factor contributing to the near-ideal subthreshold swing (61-68 mV dec-1) observed in IL-OFETs. Further investigations unveil the neutral electrical nature of the IL bulk during OFET operation, confirming the hypothesis that the applied gate bias voltage in electrolyte-gated OFETs drops across the EDLs formed at the interfaces. The impedance spectroscopic (IS) analysis confirms the low contact resistance (≈1 Ω·m) of IL-OFETs calculated using the transition voltage method. The IS analysis also reveals the low-transmissive nature of the IL/organic semiconductor interface. The knowledge gained from this study holds significant implications for realizing high-performance electrolyte-gated OFETs in various applications including digital electronics, energy storage, and sensing. By unraveling the factors influencing the device performance, such as VGS,eff and trap DOS, this research contributes to the advancement of organic electronics and paves the way for future developments in the field.
Collapse
Affiliation(s)
- Yogesh Yadav
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh, India 201314
| | - Samarendra P Singh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh, India 201314
| |
Collapse
|
7
|
Wang Y, Tian G. Theoretical Insight into the Imidazolium-Based Ionic Liquid Interface Structure and Differential Capacitance on Au(111): Effects of the Cationic Substituent Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14231-14245. [PMID: 37751408 DOI: 10.1021/acs.langmuir.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Electric double layers (EDLs) play a key role in the electrochemical and energy storage of supercapacitors. It is important to understand the structure and properties of EDLs. In this work, quantum chemical calculations and molecular dynamics (MD) simulations are used to study the microstructure of EDLs of four different substituents of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) on the Au(111) surface. It is shown that the particle interactions influence the different arrangements of the anion and cation. More alkyl substitutions and longer alkyl chains result in a higher ELUMO and thus a stronger interaction energy between cations and electrodes. Strong interactions produce linear patterns of anions/cations on the electrode and a maximum value of differential capacitance near PZC, whereas weak interactions generate worm-like patterns of anions/cations on Au(111) and a minimum value of differential capacitance near the PZC. We hold the opinion that the alkyl substitution has more effects on the EDLs. Our analysis provides a new perspective on EDLs structures at the atomic and molecular level. This study provides a good basis and guidance for further understanding the interface phenomena and characteristics of ionic liquids in electrochemical and energy device applications.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Open University, Kunming 650223, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
8
|
Stephens NM, Smith EA. Structure of Deep Eutectic Solvents (DESs): What We Know, What We Want to Know, and Why We Need to Know It. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14017-14024. [PMID: 36346803 DOI: 10.1021/acs.langmuir.2c02116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep eutectic solvents (DESs) are a tunable class of solvents with many advantageous properties including good thermal stability, facile synthesis, low vapor pressure, and low-to-negligible toxicity. DESs are composed of hydrogen bond donors and acceptors that, when combined, significantly decrease the freezing point of the resulting solvent. DESs have distinct interfacial and bulk structural heterogeneity compared to traditional solvents, in part due to various intramolecular and intermolecular interactions. Many of the physiochemical properties observed for DESs are influenced by structure. However, our understanding of the interfacial and bulk structure of DESs is incomplete. To fully exploit these solvents in a range of applications including catalysis, separations, and electrochemistry, a better understanding of DES structure must be obtained. In this Perspective, we provide an overview of the current knowledge of the interfacial and bulk structure of DESs and suggest future research directions to improve our understanding of this important information.
Collapse
Affiliation(s)
- Nicole M Stephens
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Emily A Smith
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
9
|
Mechanism of oscillation of aqueous electrical double layer capacitance: Role of solvent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Casimiro A, Lugger J, Lub J, Nijmeijer K. Non-Globular Organic Ionic Plastic Crystal Containing a Crown-Ether Moiety - Tuning Its Behaviour Using Sodium Salts. Chemphyschem 2022; 23:e202200258. [PMID: 35561265 PMCID: PMC9400962 DOI: 10.1002/cphc.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Organic ionic plastic crystals (OIPCs) are a class of soft materials showing positional order while still allowing orientational freedom. Due to their motional freedom in the solid state, they possess plasticity, non-flammability and high ionic conductivity. OIPC behavior is typically exhibited by 'simple' globular molecules allowing molecular rotation, whereas the interactions that govern the formation of OIPC phases in complex non-globular molecules are less understood. To better understand these interactions, a new family of non-globular OIPCs containing a 15-crown-5 ether moiety was synthetized and characterized. The 15C5BA molecule prepared does not exhibit the sought-after behavior because of its non-globular nature and strong intermolecular H-bonds that restrict orientational motion. However, the OIPC behavior was successfully obtained through complexation of the crown-ether moiety with sodium salts containing chaotropic anions. Those anions weaken the interactions between the molecules, allowing rotational freedom and tuning of the thermal and morphological properties of the OIPC.
Collapse
Affiliation(s)
- Anna Casimiro
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Jody Lugger
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Johan Lub
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Kitty Nijmeijer
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
11
|
Han M, Rogers SA, Espinosa-Marzal RM. Rheological Characteristics of Ionic Liquids under Nanoconfinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2961-2971. [PMID: 35220714 DOI: 10.1021/acs.langmuir.1c03460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the dynamic properties of ionic liquids (ILs) in nanoconfinement play a crucial role in the performance of IL-based electrochemical and mechanical devices, experimental work mostly falls short at reporting "solid-like" versus "liquid-like" behavior of confined ILs. The present work is the first to conduct frequency-sweep oscillatory-shear rheology on IL nanofilms, reconciling the solid-versus-liquid debate and revealing the importance of shear rate in the behavior. We disentangle and analyze the viscoelasticity of nanoconfined ILs and shed light on their relaxation mechanisms. Furthermore, a master curve describes the scaling of the dynamic behavior of four (non-hydrogen-bonding) ILs under nanoconfinement and reveals the role of the compressibility of the flow units.
Collapse
Affiliation(s)
- Mengwei Han
- Department of Civil and Environmental Engineering at University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering at University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|