1
|
Verma D, Okhawilai M, Subramani K, Chandrasekaran K, Kasemsiri P, Uyama H. Cefixime loaded bare and functionalized halloysite nanocarriers and their biomedical applications. ENVIRONMENTAL RESEARCH 2024; 252:118927. [PMID: 38631467 DOI: 10.1016/j.envres.2024.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications. Clay minerals are identified as a one of the potential nanocarrier for the drug delivery. Owing to their biocompatibility and very low cytotoxicity, clay minerals showing effective therapeutic applications. In the present investigation, clay mineral, i.e., Halloysite nano tubes are utilized as a nanocarrier for the delivery of antibiotic cefixime (CFX), a third-generation cephalosporin. The HNT was first functionalized with the sulfuric acid and then further treated with the 3-(aminopropyl)triethoxysilane (APTES). The drug is loaded on three different classifications of HNTs, i.e., Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT and their comparative analysis is established. Different characterization techniques such as X-ray diffractometry (XRD), Fourier transform infra-red (FT-IR), Transmission electron microscopy TEM), Brunauer-Emmett-Teller (BET), adsorption studies, and Thermogravimetric analysis (TGA) were performed to evaluate their chemical, structural, morphological, and thermal properties. TGA confirmed the encapsulation efficiency of Bare-CFX-HNT, Acid-CFX-HNT, and APTES-CFX-HNT as 42.65, 52.19, and 53.43%, respectively. Disk diffusion and MTT assay confirmed that the drug loaded HNTs have potential antibacterial activities and less cytotoxicity. The adsorption capacity of CFX with different HNTs are evaluated and Different adsorption and kinetic models have been discussed. Drug release studies shows that APTES-CFX-HNT showing sustained release of cefixime as compared to Bare-CFX-HNT and Acid-CFX-HNT.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Karthik Subramani
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Taheri-Ledari R, Ganjali F, Zarei-Shokat S, Dinmohammadi R, Asl FR, Emami A, Mojtabapour ZS, Rashvandi Z, Kashtiaray A, Jalali F, Maleki A. Plasmonic porous micro- and nano-materials based on Au/Ag nanostructures developed for photothermal cancer therapy: challenges in clinicalization. NANOSCALE ADVANCES 2023; 5:6768-6786. [PMID: 38059020 PMCID: PMC10696950 DOI: 10.1039/d3na00763d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Photothermal therapy (PTT) has developed in recent decades as a relatively safe method for the treatment of cancers. Recently, various species of gold and silver (Au and Ag) nanostructures have been developed and investigated to achieve PTT due to their highly localized surface plasmon resonance (LSPR) effect. Concisely, the collective oscillation of electrons on the surface of Au and Ag nanostructures upon exposure to a specific wavelength (depending on their size and shape) and further plasmonic resonance leads to the heating of the surface of these particles. Hence, porous species can be equipped with tiny plasmonic ingredients that add plasmonic properties to therapeutic cargoes. In this case, a precise review of the recent achievements is very important to figure out to what extent plasmonic photothermal therapy (PPTT) by Au/Ag-based plasmonic porous nanomedicines successfully treated cancers with satisfactory biosafety. Herein, we classify the various species of LSPR-active micro- and nano-materials. Moreover, the routes for the preparation of Ag/Au-plasmonic porous cargoes and related bench assessments are carefully reviewed. Finally, as the main aim of this study, principal requirements for the clinicalization of Ag/Au-plasmonic porous cargoes and their further challenges are discussed, which are critical for specialists in this field.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Reihane Dinmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Emami
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Sadat Mojtabapour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Rashvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| |
Collapse
|
3
|
Soleymani S, Naghib SM. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon 2023; 9:e19363. [PMID: 37662765 PMCID: PMC10474476 DOI: 10.1016/j.heliyon.2023.e19363] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
The osseous tissue can be classified as a nanocomposite that encompasses a complex interweaving of organic and inorganic matrices. This intricate amalgamation consists of a collagen component and a mineral phase that are intricately arranged to form elaborate and perforated configurations. Hydroxyapatite, whether synthesized artificially or obtained from natural sources, has garnered considerable attention as a composite material in the field of bone tissue engineering due to its striking resemblance to bone in terms of structure and characteristics. Hydroxyapatite (HA) constitutes the predominant ceramic biomaterial for biomedical applications due to its ability to replicate the mineral composition of vertebrate bone. Nonetheless, it is noteworthy that the present biomimetic substance exhibits unfavorable mechanical characteristics, characterized by insufficient tensile and compressive strength, thus rendering it unsuitable for effective employment in the field of bone tissue engineering. Due to its beneficial attributes, hydroxyapatite (HA) is frequently employed in conjunction with various polymers and crosslinkers as composites to enhance mechanical properties and overall efficacy of implantable biomaterials engineered. The restoration of skeletal defects through the use of customized replacements is an effective way to replace damaged or lost bone structures. This method not only restores the bones' original functions but also reinstates their initial aesthetic appearance. The utilization of hydroxyapatite-polymer composites within 3D-printed grafts necessitates meticulous optimization of both mechanical and biological properties, in order to ensure their suitability for employment in medical devices. The utilization of 3D-printing technology represents an innovative approach in the manufacturing of HA-based scaffolds, which offers advantageous prospects for personalized bone regeneration. The expeditious prototyping method, with emphasis on the application of 3D printing, presents a viable approach in the development of bespoke prosthetic implants, grounded on healthcare data sets. 4D printing approach is an evolved form of 3D printing that utilizes programmable materials capable of altering the intended shape of printed structures, contingent upon single or dual stimulating factors. These factors include aspects such as pH level, temperature, humidity, crosslinking degree, and leaching factors.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
4
|
Zare I, Taheri-Ledari R, Esmailzadeh F, Salehi MM, Mohammadi A, Maleki A, Mostafavi E. DNA hydrogels and nanogels for diagnostics, therapeutics, and theragnostics of various cancers. NANOSCALE 2023. [PMID: 37337663 DOI: 10.1039/d3nr00425b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Kalidas S, Sumathi S. Mechanical, biocompatibility and antibacterial studies of gelatin/polyvinyl alcohol/silkfibre polymeric scaffold for bone tissue engineering. Heliyon 2023; 9:e16886. [PMID: 37332937 PMCID: PMC10272316 DOI: 10.1016/j.heliyon.2023.e16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
The current study focuses on the incorporation of natural polymers (gelatin, silk fibre) and synthetic (polyvinyl alcohol) polymer towards the fabrication of a novel composite for bone tissue engineering. The Electrospinning method was used to fabricate the novel gelatin/polyvinyl alcohol/silk fibre scaffold. XRD, FTIR and SEM-EDAX analysis was performed to characterize the composite. The characterized composite was investigated for its physical properties (porosity and mechanical studies) and biological studies (antimicrobial activity, hemocompatibility, bioactivity). The fabricated composite showed high porosity and the highest tensile strength of 34 MPa, with elongation at a break of 35.82 for the composite. The antimicrobial activity of the composite was studied and the zone of inhibition was measured around 51 ± 0.54 for E. coli, 48 ± 0.48 for S. aureus and 50 ± 0.26 for C. albicans. The hemolytic % was noted around 1.36 for the composite and the bioactivity assay revealed the formation of apatite on composite surfaces.
Collapse
|
6
|
Taheri-Ledari R, Tarinsun N, Sadat Qazi F, Heidari L, Saeidirad M, Ganjali F, Ansari F, Hassanzadeh-Afruzi F, Maleki A. Vancomycin-Loaded Fe 3O 4/MOF-199 Core/Shell Cargo Encapsulated by Guanidylated-β-Cyclodextrine: An Effective Antimicrobial Nanotherapeutic. Inorg Chem 2023; 62:2530-2547. [PMID: 36734619 DOI: 10.1021/acs.inorgchem.2c02634] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study describes an efficient antimicrobial drug delivery system composed of iron oxide magnetic nanoparticles (Fe3O4 NPs) coated by an MOF-199 network. Then, the prepared vancomycin (VAN)-loaded carrier was fully packed in a lattice of beta-cyclodextrin (BCD). For cell adhesion, beta-cyclodextrin has been functionalized with guanidine (Gn) groups within in situ synthetic processes. Afterward, drug loading efficiency and the release patterns were investigated through precise analytical methods. Confocal microscopy has shown that the prepared cargo (formulated as [VAN@Fe3O4/MOF-199]BCD-Gn) could be attached to the Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial cells in a higher rate than the individual VAN. The presented system considerably increased the antibacterial effects of the VAN with a lower dosage of drug. The cellular experiments such as the zone of inhibition and optical density (OD600) have confirmed the enhanced antibacterial effect of the designed cargo. In addition, the MIC/MBC (minimum inhibitory and bactericidal concentrations) values have been estimated for the prepared cargo compared to the individual VAN, revealing high antimicrobial potency of the VAN@Fe3O4/MOF-199]BCD-Gn cargo.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Nasibe Tarinsun
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Leili Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
7
|
Acet Ö, Shcharbin D, Zhogla V, Kirsanov P, Halets-Bui I, Önal Acet B, Gök T, Bryszewska M, Odabaşı M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113031. [PMID: 36435026 DOI: 10.1016/j.colsurfb.2022.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Short peptides are important in the design of self-assembled materials due to their versatility and flexibility. Self-assembled dipeptides, a group of peptide nanostructures, have highly attractive uses in the field of biomedicine. Recently these materials have proved to be important nanostructures because of their biocompatibility, low-cost and simplicity of synthesis, functionality/easy tunability and nano dimensions. Although there are different studies on peptide and protein-based nanostructures, more information about self-assembled nanostructures for dipeptides is still required to discover the advantages, challenges, importance, synthesis, interactions, and applications. This review describes and discusses the self-assembled dipeptide nanostructures especially for biomedical applications.
Collapse
Affiliation(s)
- Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey.
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Pavel Kirsanov
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Inessa Halets-Bui
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Tuba Gök
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Science, University of Lodz, Poland
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| |
Collapse
|
8
|
Zhang W, Taheri-Ledari R, Ganjali F, Mirmohammadi SS, Qazi FS, Saeidirad M, KashtiAray A, Zarei-Shokat S, Tian Y, Maleki A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Adv 2022; 13:80-114. [PMID: 36605676 PMCID: PMC9764328 DOI: 10.1039/d2ra06888e] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In the field of targeted drug delivery, the effects of size and morphology of drug nanocarriers are of great importance and need to be discussed in depth. To be concise, among all the various shapes of nanocarriers, rods and tubes with a narrow cross-section are the most preferred shapes for the penetration of a cell membrane. In this regard, several studies have focused on methods to produce nanorods and nanotubes with controlled optimized size and aspect ratio (AR). Additionally, a non-spherical orientation could affect the cellular uptake process while a tangent angle of less than 45° is better at penetrating the membrane, and Ω = 90° is beneficial. Moreover, these nanocarriers show different behaviors when confronting diverse cells whose fields should be investigated in future studies. In this survey, a comprehensive classification based on carrier shape is first submitted. Then, the most commonly used methods for control over the size and shape of the carriers are reviewed. Finally, influential factors on the cellular uptake and internalization processes and related analytical methods for evaluating this process are discussed.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P. R. China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Amir KashtiAray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ye Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section of South Renmin Road Chengdu 610041 P. R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| |
Collapse
|
9
|
Taheri-Ledari R, Jalali F, Heidari L, Ganjali F, Asl FR, Zarei-Shokat S, Forouzandeh-Malati M, Mohammadi A, Maleki A. An effective antimicrobial complex of nanoscale β-cyclodextrin and ciprofloxacin conjugated to a cell adhesive dipeptide. RSC Adv 2022; 12:35383-35395. [PMID: 36544467 PMCID: PMC9752432 DOI: 10.1039/d2ra05822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Today, various drug delivery systems (DDS) are utilized to carry and deliver the desired drugs to the targeted action area to reduce potential side effects and negative interactions. Nanomaterials are an excellent candidate for the delivery of potent drugs, as they enhance pharmacokinetic and pharmacodynamic properties. Herein, we present a new ciprofloxacin (CPFX) delivery system based on a polymeric nanocarrier (β-cyclodextrin) conjugated to a cell-adhesive dipeptide structure. Cyclodextrin (CD) is an inexpensive, easily accessible, biodegradable, and biocompatible material. Also, the conjugation of cysteine-arginine (CR) dipeptide to the CPFX/β-CD particles is carried out to enhance cell adhesion growth. Through accurate analysis, the drug content and release for a final product have been estimated to be ca. 32%. Overall, the antimicrobial effects of CPFX were considerably raised through a low dose of CPFX. The growth zone inhibition of CPFX/β-CD-CR particles on the staphylococcus aureus and the Escherichia coli bacterial cells was 5.5 ± 0.2 cm and 3.5 ± 0.2 cm, respectively. Hence, this therapeutic nano bioconjugate is an excellent candidate to be applied in antimicrobial applications with the minimum incorporated CPFX.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leili Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
- Department of Chemistry, Faculty of Basic Sciences, Ilam University P. O. Box 69315-516 Ilam Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
10
|
Forouzandeh-Malati M, Ganjali F, Zamiri E, Zarei-Shokat S, Jalali F, Padervand M, Taheri-Ledari R, Maleki A. Efficient Photodegradation of Eriochrome Black-T by a Trimetallic Magnetic Self-Synthesized Nanophotocatalyst Based on Zn/Au/Fe-Embedded Poly(vinyl alcohol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13728-13743. [PMID: 36318162 DOI: 10.1021/acs.langmuir.2c01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study presents a novel photocatalytic system for photocatalytic degradation of Eriochrome black-T (EBT) dye via green light-emitting diode (LED) light exposure. This photocatalyst is comprised of nanoscale components, i.e., poly(vinyl alcohol) (PVA), magnetic iron oxide nanoparticles (Fe3O4 NPs), gold NPs (Au NPs), and zinc oxide nanorods (ZnO NRs), rendering an active high surface area. The most highlighted property from the structural facet is the superparamagnetic behavior of Fe3O4 NPs, which provides a facile collection of magnetic photocatalyst NPs from the reaction flask and is successfully recycled eight times without considerable reduction in catalytic behavior. Briefly, the photocatalytic degradation at its highest efficiency reached 51.4% (10 ppm dye solution, 5.0 mL) and 64.75% (8 ppm dye solution, 5.0 mL) utilizing 10 mg of the designed photocatalyst (formulated as Fe3O4@PVA-Au/ZnO), a magnetic photocatalytic system under green LED light (7 W, 526 nm) exposure for 60 min. Besides, the photocatalytic degradation mechanism of the EBT dye by the as-prepared photocatalyst was proposed. Based on the obtained results, the presented photocatalytic method was recommended for scaling up and large-scale exploitation for the purification of the water resources.
Collapse
Affiliation(s)
- Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Elnaz Zamiri
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh55181-83111, Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Mohsen Padervand
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh55181-83111, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
11
|
Taheri-Ledari R, Ahghari MR, Ansari F, Forouzandeh-Malati M, Mirmohammadi SS, Zarei-Shokat S, Ramezanpour S, Zhang W, Tian Y, Maleki A. Synergies in antimicrobial treatment by a levofloxacin-loaded halloysite and gold nanoparticles with a conjugation to a cell-penetrating peptide. NANOSCALE ADVANCES 2022; 4:4418-4433. [PMID: 36321152 PMCID: PMC9552876 DOI: 10.1039/d2na00431c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Herein, a novel designed antimicrobial therapeutic drug delivery system is presented, in which halloysite nanotubes (HNTs) encapsulate a determined dosage of levofloxacin (lvx). Moreover, gold nanoparticles (AuNPs) have been embedded into the structure for plasmonic heating under irradiation of the green LED light (7 W, 526 nm). It was revealed that the plasmonic heating of the AuNPs leads to a controlled trend in the lvx release process. Also, a synergistic effect on the antimicrobial activity of the prepared therapeutic system has been observed through photothermal heating of the structure. To enhance the cell adhesion, a cell-penetrating peptide sequence (CPP) is conjugated to the surfaces. This CPP has led to quick co-localization of the prepared nano-cargo (denoted as lvx@HNT/Au-CPP) with the bacterial living cells and further attachment (confirmed by confocal microscopy). Concisely, the structure of the designed nano-cargo has been investigated by various methods, and the in vitro cellular experiments (zone of inhibition and colony-counting) have disclosed that the antimicrobial activity of the lvx is significantly enhanced through incorporation into the HNT/Au-CPP delivery system (drug content: 16 wt%), in comparison with the individual lvx with the same dosage. Hence, it can be stated that the bacterial resistance against antibiotics and the toxic effects of the chemical medications are reduced through the application of the presented strategy.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology P.O. Box 15875-4416 Tehran Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P.R. China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No.14, 3rd section of South Renmin Road Chengdu 610041 P.R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
12
|
A magnetic antibody-conjugated nano-system for selective delivery of Ca(OH) 2 and taxotere in ovarian cancer cells. Commun Biol 2022; 5:995. [PMID: 36130999 PMCID: PMC9492675 DOI: 10.1038/s42003-022-03966-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
An efficient strategy for cancer therapy is presented, in which a tumor mass is initially pretreated with calcium hydroxide, then treated with Taxotere (TXT). In this regard, an advanced delivery system based on iron oxide nanoparticles has been designed. The surface of nanoparticles was functionalized with sortilin (SORT-1, a human IgG1 monoclonal antibody) that specifically encodes caov-4 ovarian cancerous cells. Plasmonic heating of the incorporated gold nanoparticles in polyvinyl alcohol (PVA) has been exploited to control the release process of TXT. The in vitro, ex vivo and in vivo experiments have exhibited high efficacy of a seven-day pretreatment by Ca(OH)2 plus 14 days treatment program by Ca(OH)2@Fe3O4/PVA/Au-SORT nano-therapeutics, where more penetration ratio resulted in tumor growth inhibition by ca. 78.3%. As a result, due to showing high values of the anti-tumor properties and biosafety, the presented pretreatment strategy is suggested for more effective treatment on the aged tumors. A magnetic drug delivery system containing polyvinyl alcohol, gold nanoparticles, and sortilin antibody followed by the plasmonic photothermal heating strategy for the controlled drug release is proposed, with use in ovarian cancer demonstrated.
Collapse
|
13
|
Taheri-Ledari R, Qazi FS, Saeidirad M, Maleki A. A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions. Sci Rep 2022; 12:14865. [PMID: 36050366 PMCID: PMC9436994 DOI: 10.1038/s41598-022-19030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, a new heterogeneous magnetic catalytic system based on selenium-functionalized iron oxide nanoparticles is presented and suggested for facilitating amide/peptide bonds formation. The prepared nanocatalyst, entitled as "Fe3O4/SiO2-DSBA" (DSBA stands for 2,2'-diselanediylbis benzamide), has been precisely characterized for identifying its physicochemical properties. As the most brilliant point, the catalytic performance of the designed system can be mentioned, where only a small amount of Fe3O4/SiO2-DSBA (0.25 mol%) has resulted in 89% reaction yield, under a mild condition. Also, given high importance of green chemistry, convenient catalyst particles separation from the reaction medium through its paramagnetic property (ca. 30 emu·g-1) should be noticed. This particular property provided a substantial opportunity to recover the catalyst particles and successfully reuse them for at least three successive times. Moreover, due to showing other excellences, such as economic benefits and nontoxicity, the presented catalytic system is recommended to be scaled up and exploited in the industrial applications.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
14
|
Zhang W, Taheri-Ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022; 8:e09577. [PMID: 35706949 PMCID: PMC9189039 DOI: 10.1016/j.heliyon.2022.e09577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are nanoscale drug delivery vehicles that have been conjugated to or decorated with biologically active targeting ligands. These targeting ligands can be antibodies, peptides, aptamers, or small molecules such as vitamins or hormones. Most research studies in this field have been devoted to targeting cancer. Moreover, the nanostructures can be designed with an additional level of targeting by being designed to be stimulus-responsive or "smart" by a judicious choice of materials to be incorporated into the hybrid nanostructures. This stimulus could be an acidic pH, raised temperature, enzyme, ultrasound, redox potential, an externally applied magnetic field, or laser irradiation. In this case, the smart capability can increase the accumulation at the tumor site or the on-demand drug release, while the ligand ensures selective binding to the tumor cells. The present review highlights some interesting studies classified according to the nanostructure material. These materials include natural substances (polysaccharides), multi-walled carbon nanotubes (and halloysite nanotubes), metal-organic frameworks and covalent-organic frameworks, metal nanoparticles (gold and silver), and polymeric micelles.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, PR China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fereshte Hassanzadeh Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zoleikha Hajizadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Samin Sadat Sehat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
15
|
Taheri-Ledari R, Asl FR, Saeidirad M, Kashtiaray A, Maleki A. Convenient synthesis of dipeptide structures in solution phase assisted by a thioaza functionalized magnetic nanocatalyst. Sci Rep 2022; 12:4719. [PMID: 35304475 PMCID: PMC8933478 DOI: 10.1038/s41598-022-07303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, a heterogeneous nanocatalyst is presented that is capable to efficiently catalyze the synthetic reactions of amide bond formation between the amino acids. This nanocatalyst which is named Fe3O4@SiO2/TABHA (TABHA stands for thio-aza-bicyclo-hepten amine), was composed of several layers that increased the surface area to be functionalized with 2-aminothiazole rings via Diels-Alder approach. Firstly, various analytic methods such as Fourier-transform infrared (FTIR) and energy-dispersive X-ray (EDX) spectroscopic methods, thermogravimetric analysis (TGA), electron microscopy (EM), and UV-vis diffuse reflectance spectroscopy (UV-DRS) have been used to characterize the desired structure of the Fe3O4@SiO2/TABHA catalyst. Afterward, the application of the presented catalytic system has been studied in the peptide bond formation reactions. Due to the existence of a magnetic core in the structure of the nanocatalyst, the nanoparticles (NPs) could be easily separated from the reaction medium by an external magnet. This special feature has been corroborated by the obtained results from vibrating-sample magnetometer (VSM) analysis that showed 24 emu g-1 magnetic saturation for the catalytic system. Amazingly, a small amount of Fe3O4@SiO2/TABHA particles (0.2 g) has resulted in ca. 90% efficiency in catalyzing the peptide bond formation at ambient temperature, over 4 h. Also, this nanocatalyst has demonstrated an acceptable recycling ability, where ca. 76% catalytic performance has been observed after four recycles. Due to high convenience in the preparation, application, and recyclization processes, and also because of lower cost than the traditional coupling reagents (like TBTU), the presented catalytic system is recommended for the industrial utilization.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|