1
|
Yin G, Zhou J, Lu W, Li L, Liu D, Qi M, Tang BZ, Théato P, Chen T. Targeting Compact and Ordered Emitters by Supramolecular Dynamic Interactions for High-performance Organic Ambient Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311347. [PMID: 38335472 DOI: 10.1002/adma.202311347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Purely organic room-temperature phosphorescence (RTP) materials have received intense attention due to their fascinating optical properties and advanced optoelectronic applications. The promotion of intersystem crossing (ISC) and minimalization of nonradiative dissipation under ambient conditions are key prerequisites for realizing high-performance organic RTP; However, the ISC process is generally inefficient for organic fluorogens and the populated triplet excitons are always too susceptible to be well stabilized by conventional means. Particularly, organizing organic fluorophores into compact and ordered entities by supramolecular dynamic interactions has proven to be a newly-emerged strategy to boost the ISC process greatly and suppress the non-radiative relaxations immensely, facilitating the population and stabilization of triplet excitons to access high-performance organic RTP. Consequently, well-defined organic emitters enable robust RTP emission even in the solution state, thus greatly extending the applications. Here, this review is focused on a timely and brief introduction to recent progress in tailoring ordered high-performance RTP emitters by supramolecular dynamic interactions. Their typical preparation strategies, optoelectronic properties, and applications are thoroughly summarized. In the summary section, key challenges and perspectives of this field are highlighted to suggest potential directions for future study.
Collapse
Affiliation(s)
- Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayin Zhou
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longqiang Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Patrick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str.18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
2
|
Jia X, Zhu L. Photoexcitation-Induced Assembly: A Bottom-Up Physical Strategy for Driving Molecular Motion and Phase Evolution. Acc Chem Res 2023; 56:655-666. [PMID: 36888924 DOI: 10.1021/acs.accounts.2c00818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
ConspectusIn the field of molecular assembly, photodriven self-assembly is a smart and crucial strategy to regulate the molecular orderliness, multiscale structure, and optoelectronic properties. Traditionally, photodriven self-assembly is based on photochemical processes, through molecular structural change induced by photoreactions. Despite great progress in the photochemical self-assembly, there still exists disadvantages (e.g., the photoconversion rate never reaches 100% with the possible side reactions). Therefore, the photoinduced nanostructure and morphology are often difficult to predict due to insufficient phase transition or defects. In contrast, the physical processes based on photoexcitation are straightforward and can fully utilize photons to avoid the drawbacks of photochemistry. The photoexcitation strategy excludes the change of molecular structure, only utilizing the molecular conformational change from the ground state to excited state. Then, the excited state conformation is employed to drive molecular movement and aggregation, further promoting the synergistic assembly or phase transition of the entire material system. The regulation and exploration of molecular assembly upon photoexcitation can open up a new paradigm to deal with the "bottom-up" behavior and develop unprecedented optoelectronic functional materials.This Account starts with a brief introduction to the problems faced by photocontrolled self-assembly and presents the photoexcitation-induced assembly (PEIA) strategy. Then, we focus on exploring PEIA strategy based on persulfurated arenes as the prototype. The molecular conformational transition of persulfurated arenes from the ground state to the excited state is conducive to the formation of intermolecular interactions, successively driving molecular motion, aggregation, and assembly. Next, we describe our progress in exploring PEIA of persulfurated arenes at the molecular level and then demonstrate that the PEIA of persulfurated arenes can synergistically drive molecular motion and phase transition in various block copolymer systems. Moreover, we provide the potential applications of PEIA in dynamic visual imaging, information encryption, and surface property regulation. Finally, an outlook on further development of PEIA is prospected.
Collapse
Affiliation(s)
- Xiaoyong Jia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, PR China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China
| |
Collapse
|
3
|
Yang F, Yue B, Zhu L. Light-triggered Modulation of Supramolecular Chirality. Chemistry 2023; 29:e202203794. [PMID: 36653305 DOI: 10.1002/chem.202203794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Dynamically controlling the supramolecular chirality is of great significance in development of functional chiral materials, which is thus essential for the specific function implementation. As an external energy input, light is remote and accurate for modulating chiral assemblies. In non-polarized light control, some photochemically reactive units (e. g., azobenzene, ɑ-cyanostilbene, spiropyran, anthracene) or photo-induced directionally rotating molecular motors were designed to drive chiral transfer or amplification. Besides, photoexcitation induced assembly based physical approach was also explored recently to regulate supramolecular chirality beyond photochemical reactions. In addition, circularly polarized light was applied to induce asymmetric arrangement of organic molecules and asymmetric photochemical synthesis of inorganic metallic nanostructures, in which both wavelength and handedness of circularly polarized light have effects on the induced supramolecular chirality. Although light-triggered chiral assemblies have been widely applied in photoelectric materials, biomedical fields, soft actuator, chiral catalysis and chiral sensing, there is a lack of systematic review on this topic. In this review, we summarized the recent studies and perspectives in the constructions and applications of light-responsive chiral assembled systems, aiming to provide better knowledge for the development of multifunctional chiral nanomaterials.
Collapse
Affiliation(s)
- Fan Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
4
|
Xu X, Zhang M, Li Z, Ye D, Gou L, Zou Q, Zhu L. Highly efficient light-induced self-assembly of gold nanoparticles promoted by photoexcitation-induced aggregatable ligands. Chem Commun (Camb) 2023; 59:418-421. [PMID: 36515095 DOI: 10.1039/d2cc06188k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are numerous ways to achieve light-induced self-assembly of gold nanoparticles, but most of them are through chemical reaction and slow. Ligands that can perform photoexcitation-induced aggregation were synthesized and modified onto gold nanoparticles. The leading functionalized nanoparticles exhibit highly efficient light-induced self-assembly properties and show high-contrast color fading in tens of seconds.
Collapse
Affiliation(s)
- Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Danfeng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Lizhen Gou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China. .,Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|