1
|
Sam S, Sung S, Kim D. Sensitive Detection of Biomolecular Adsorption by a Low-Density Surfactant Layer Using Sum-Frequency Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17412-17419. [PMID: 38050679 DOI: 10.1021/acs.langmuir.3c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Small molecules or proteins interact with a biomembrane in various ways for molecular recognition, structure stabilization, and transmembrane signaling. In this study, 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), having a choline group, was used to investigate this interaction by using sum-frequency vibrational spectroscopy. The sum-frequency spectrum characteristic of a neat monolayer changed to that of a bare air/water interface at a larger molecular area of the DPTAP molecules due to local laser heating. Upon introduction of the aromatic molecules in the subphase at around 120 Å2 per molecule, the sum-frequency signal suddenly reappeared due to molecular adhesion, and this was utilized to probe the adsorption of the aromatic ring molecules in the water subphase to the choline headgroup of the DPTAP by cation-π interaction. The onset concentrations of this sum-frequency signal change allowed a comparison of the relative interaction strengths between different aromatic molecules. A zwitterionic surfactant molecule (DPPC) was found to interact weakly compared to the cationic DPTAP molecule.
Collapse
Affiliation(s)
- Sokhuoy Sam
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Siheon Sung
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Doseok Kim
- Department of Physics, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| |
Collapse
|
2
|
Akaike K, Shimoi Y, Miura T, Morita H, Akiyama H, Horiuchi S. Disentangling Origins of Adhesive Bonding at Interfaces between Epoxy/Amine Adhesive and Aluminum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10625-10637. [PMID: 37467444 DOI: 10.1021/acs.langmuir.3c01218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Joining metals by adhesive bonding is essential in widespread fields such as mobility, dentistry, and electronics. Although adhesive technology has grown since the 1920s, the roles of interfacial phenomena in adhesive bonding are still elusive, which hampers the on-demand selection of surface treatment and adhesive types. In the present study, we clarified how chemical interactions and mechanical interlocking governed adhesive bonding by evaluating adhesion properties at the interfaces between epoxy/amine adhesive and two kinds of Al adherends: a flat aluminum hydroxide (AlxOyHz) and technical Al plate with roughness. Spectroscopic and microscopical data demonstrate that the protonation of the amino groups in an amine hardener converts Al(OH)3 on the AlxOyHz surface to AlO(OH). The interfacial protonation results in an interfacial dipole layer with positive charges on the adhesive side, whose electrostatic interaction increases the interfacial fracture energy. The double cantilever beam tests for the flat AlxOyHz and technical Al substrates clarify that the mechanical interlocking originating from the surface roughness further increases the fracture energy. This study disentangles the roles of the chemical interactions and mechanical interlocking occurring at the epoxy adhesive/Al interface in the adhesion mechanism.
Collapse
Affiliation(s)
- Kouki Akaike
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yukihiro Shimoi
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Toshiaki Miura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hiroshi Morita
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Haruhisa Akiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shin Horiuchi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
3
|
Brown EK, Rovelli G, Wilson KR. pH jump kinetics in colliding microdroplets: accelerated synthesis of azamonardine from dopamine and resorcinol. Chem Sci 2023; 14:6430-6442. [PMID: 37325131 PMCID: PMC10266468 DOI: 10.1039/d3sc01576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
Recent studies report the dramatic acceleration of chemical reactions in micron-sized compartments. In the majority of these studies the exact acceleration mechanism is unknown but the droplet interface is thought to play a significant role. Dopamine reacts with resorcinol to form a fluorescent product azamonardine and is used as a model system to examine how droplet interfaces accelerate reaction kinetics. The reaction is initiated by colliding two droplets levitated in a branched quadrupole trap, which allows the reaction to be observed in individual droplets where the size, concentration, and charge are carefully controlled. The collision of two droplets produces a pH jump and the reaction kinetics are quantified optically and in situ by measuring the formation of azamonardine. The reaction was observed to occur 1.5 to 7.4 times faster in 9-35 micron droplets compared to the same reaction conducted in a macroscale container. A kinetic model of the experimental results suggests that the acceleration mechanism arises from both the more rapid diffusion of oxygen into the droplet, as well as increased reagent concentrations at the air-water interface.
Collapse
Affiliation(s)
- Emily K Brown
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Grazia Rovelli
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
| |
Collapse
|
4
|
Shafieenezhad A, Mitra S, Wassall SR, Tristram-Nagle S, Nagle JF, Petrache HI. Location of dopamine in lipid bilayers and its relevance to neuromodulator function. Biophys J 2023; 122:1118-1129. [PMID: 36804668 PMCID: PMC10111280 DOI: 10.1016/j.bpj.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Dopamine (DA) is a neurotransmitter that also acts as a neuromodulator, with both functions being essential to brain function. Here, we present the first experimental measurement of DA location in lipid bilayers using x-ray diffuse scattering, solid-state deuterium NMR, and electron paramagnetic resonance. We find that the association of DA with lipid headgroups as seen in electron density profiles leads to an increase of intermembrane repulsion most likely due to electrostatic charging. DA location in the lipid headgroup region also leads to an increase of the cross-sectional area per lipid without affecting the bending rigidity significantly. The order parameters measured by solid-state deuterium NMR decrease in the presence of DA for the acyl chains of PC and PS lipids, consistent with an increase in the area per lipid due to DA. Most importantly, these results support the hypothesis that three-dimensional diffusion of DA to target membranes could be followed by relatively more efficient two-dimensional diffusion to receptors within those membranes.
Collapse
Affiliation(s)
- Azam Shafieenezhad
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Saheli Mitra
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stephen R Wassall
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | | | - John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Horia I Petrache
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|