1
|
Liu M, Tang G, Liu Y, Jiang FL. Ligand Exchange of Quantum Dots: A Thermodynamic Perspective. J Phys Chem Lett 2024; 15:1975-1984. [PMID: 38346356 DOI: 10.1021/acs.jpclett.3c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Colloidal quantum dots (QDs) consist of an inorganic core and organic surface ligands. Surface ligands play a dominant role in maintaining the colloidal stability of QDs and passivating the surface defects of QDs. However, the original ligands introduced in the synthetic process of QDs cannot meet the requirements for diverse applications; therefore, ligand exchanges with functional ligands are mandatory. Understanding the ligand exchange process requires a comprehensive combination of the concepts and techniques of surface chemistry. In this Perspective, the ligand exchange process is discussed in detail. Specifically, we elaborate on the thermodynamics that can reveal the feasibility and mechanism of ligand exchange. It depicts a critical physical picture of the surface of QDs along with the following ligand exchange.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ge Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
2
|
Mahmood AU, Rizvi MH, Tracy JB, Yingling YG. Solvent Effects in Ligand Stripping Behavior of Colloidal Nanoparticles. ACS NANO 2023. [PMID: 37311219 DOI: 10.1021/acsnano.3c01313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic colloidal nanoparticle (NP) properties can be tuned by stripping stabilizing ligands using a poor solvent. However, the mechanism behind ligand stripping is poorly understood, in part because in situ measurements of ligand stripping are challenging at the nanoscale. Here, we investigate ethanol solvent-mediated oleylamine ligand stripping from magnetite (Fe3O4) NPs in different compositions of ethanol/hexane mixtures using atomistic molecular dynamics (MD) simulations and thermogravimetric analysis (TGA). Our study elucidates a complex interplay of ethanol interactions with system components and indicates the existence of a threshold concentration of ∼34 vol % ethanol, above which ligand stripping saturates. Moreover, hydrogen bonding between ethanol and stripped ligands inhibits subsequent readsorption of the ligands on the NP surface. A proposed modification of the Langmuir isotherm explains the role of the enthalpy of mixing of the ligands and solvents on the ligand stripping mechanism. A good agreement between the MD predictions and TGA measurements of ligand stripping from Fe3O4 NPs validates the simulation observations. Our findings demonstrate that the ligand coverage of NPs can be controlled by using a poor solvent below the threshold concentration and highlight the importance of ligand-solvent interactions that modulate the properties of colloidal NPs. The study also provides an approach for a detailed in silico study of ligand stripping and exchange from colloidal NPs that are crucial for applications of NPs spanning self-assembly, optoelectronics, nanomedicine, and catalysis.
Collapse
Affiliation(s)
- Akhlak U Mahmood
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Zhou X, Pang Z, Cao W, Cao Z, Zhu J, Qi Y, Peng X, Kong X. Diffusion NMR for Measuring Dynamic Ligand Exchange on Colloidal Nanocrystals. Anal Chem 2023; 95:792-801. [PMID: 36520837 DOI: 10.1021/acs.analchem.2c02964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligand exchange is fundamentally related to the surface chemistry of nanoparticles in solution and is also an essential procedure for their synthesis and solution processing. The solution of ligand-bearing nanoparticles can be regarded as a dynamic equilibrium of bound and free ligands depending on the concentration and temperature. The direct experimental calibration of the ligand exchange dynamics relies on the in situ and real-time quantification of bound and free ligands. However, existing analytical strategies are often with limited applicability considering the requirement of special functional groups or the indirect detection of photoluminescence or reaction heat. In this work, we explore diffusion-based methods of solution-state nuclear magnetic resonance (NMR) as a general strategy to probe ligand exchange. Using comprehensive numerical simulations, we show that diffusion NMR with designable time sequences can effectively distinguish bound and free ligands and measure the exchange rate constants from 0.5 to 200 s-1 under typical instrumental settings. These methods are demonstrated experimentally on colloidal CdSe nanocrystal systems with carboxylate or amine ligands whose exchange rates were previously undetectable. The kinetic rate constants, activation energies, and thermodynamic parameters of ligand exchange have been obtained under variable temperature conditions. We expect the diffusion NMR strategies to be generally applicable for calibrating the exchange of organic ligands on various nanoparticle systems.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Zhenfeng Pang
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Weicheng Cao
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Zhenming Cao
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Jie Zhu
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Yixin Qi
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Xiaogang Peng
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| |
Collapse
|