1
|
Zhang J, Pandit S, Rahimi S, Cao Z, Mijakovic I. Vertical graphene nanoarray decorated with Ag nanoparticles exhibits enhanced antibacterial effects. J Colloid Interface Sci 2024; 676:808-816. [PMID: 39067216 DOI: 10.1016/j.jcis.2024.07.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial infection of biomedical implants is an important clinical challenge, driving the development of novel antimicrobial materials. The antibacterial effect of vertically aligned graphene as a nanoarray coating has been reported. In this study, vertically aligned graphene nanosheets decorated with silver nanoparticles were fabricated to enhance antibacterial effectiveness. Vertical graphene (VG) nanoflakes were synthesized by plasma-enhanced chemical vapor deposition (PECVD). Ag nanoparticles were attached to the surface of VG through using polydopamine and achieving a sustained release of Ag+. VG loaded with Ag nanoparticles (VGP/Ag) not only prevented bacterial adhesion for a long time, but also exhibited good biocompatibility. This work provides a new venue for designing antibacterial surfaces based on combination of graphene nanoarrays with other nanomaterials, and the results indicate that this approach could be very successful in preventing implant associated infections.
Collapse
Affiliation(s)
- Jian Zhang
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Shadi Rahimi
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Zhejian Cao
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Limthin D, Leepheng P, Tunhoo B, Klamchuen A, Suramitr S, Thiwawong T, Phromyothin D. Enhancement in Sensitivity and Selectivity of Electrochemical Technique with CuO/g-C 3N 4 Nanocomposite Combined with Molecularly Imprinted Polymer for Melamine Detection. Polymers (Basel) 2024; 16:1800. [PMID: 39000656 PMCID: PMC11244477 DOI: 10.3390/polym16131800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
This study focused on enhancing the sensitivity and selectivity to detect melamine by utilizing a photoelectrochemical method. This was achieved by combining a melamine-imprinted polymer with a CuO/g-C3N4 nanocomposite, which was synthesized through chemical precipitation and calcination. The resulting nanocomposite exhibits improved carrier mobility and photoelectrochemical properties. A molecularly imprinted receptor for selective detection was created through bulk polymerization with methacrylic acid and a melamine template. The characterization of the nanocomposite was performed using X-ray photoelectron spectroscopy for the chemical oxidation state, X-ray diffraction patterns for the crystalline structure, and ultraviolet/visible/near-infrared spectroscopy for optical properties. The CuO/g-C3N4 nanocomposite exhibits photoactivity under visible light. The modified electrode, incorporating the CuO/g-C3N4 nanocomposite and melamine-imprinted polymer, demonstrates a linear detection range of 2.5 to 50 nM, a sensitivity of 4.172 nA/nM for melamine, and a low detection limit of 0.42 nM. It shows good reproducibility and high selectivity to melamine, proving effective against interferences and real samples, showcasing the benefits of the molecularly imprinted polymer.
Collapse
Affiliation(s)
- Dalawan Limthin
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Piyawan Leepheng
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Benchapol Tunhoo
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Electronic and Control System for Nanodevice Research Laboratory (ECSN), College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center, National Science and Technology Development Agency, Patumthani 12120, Thailand
| | - Songwut Suramitr
- Department of Chemical, Faculty of Science, Kasetsart University, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Thutiyaporn Thiwawong
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Electronic and Control System for Nanodevice Research Laboratory (ECSN), College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Darinee Phromyothin
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
3
|
Wang X, Li D, Wang W, Kozykan S, Liang Z, Ma Q, Yu X. Bi 2WO 6/TiO 2-based visible light-driven photoelectrochemical enzyme biosensor for glucose measurement. Mikrochim Acta 2024; 191:201. [PMID: 38489138 DOI: 10.1007/s00604-024-06286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nowadays, the frequent occurrence of food adulteration makes glucose detection particularly important in food safety and quality management. The quality and taste of honey are closely related to the glucose content. However, due to the drawbacks of expensive equipment, complex operating procedures, and time-consuming processes, the application scope of traditional glucose detection methods is limited. Hence, this study developed a photoelectric chemical (PEC) sensor, which is composed of a photoactive material of bismuth tungstate (Bi2WO6) with titanium dioxide (TiO2) and glucose oxidase (GOD), for simple and rapid detection of glucose. Notably, the composites' absorption prominently increased in the visible light region, and the photo-generated electron-hole pairs were efficiently separated by virtue of the unique nanostructure system, thus playing a crucial role in facilitating PEC activity. In the presence of dissolved oxygen, the photocurrent intensity was enhanced by H2O2 generated from glucose under electro-oxidation specifically catalyzed by GOD fixed on the modified electrode. When the working potential was 0.3 V, the changes of photocurrent response indicated that the PEC enzyme biosensor provides a low detection limit (3.8 µM), and a wide linear range (0.008-8 mM). This method has better selectivity in honey samples and broad application prospects in clinical diagnosis for future.
Collapse
Affiliation(s)
- Xiaotian Wang
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Dongliang Li
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Weihua Wang
- College of Food Science and Engineering, Tarim University, Alar, China.
- Production & Construction Group Key Laboratory of Special Agr34.icultural Products Further Processing in Southern Xinjiang, Alar, China.
| | - Sabira Kozykan
- Kazakh National Agrarian Research University, Abay 8, Almaty, Kazakhstan
| | - Zilong Liang
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Qiujie Ma
- College of Food Science and Engineering, Tarim University, Alar, China
| | - Xiaoqin Yu
- College of Food Science and Engineering, Tarim University, Alar, China
| |
Collapse
|
4
|
Li YL, Tian J, Shi DJ, Dong JX, Yue Z, Li G, Huang WP, Zhang SM, Zhu BL. CdSe/TiO 2NTs Heterojunction-Based Nonenzymatic Photoelectrochemical Sensor for Glucose Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14935-14944. [PMID: 37842927 DOI: 10.1021/acs.langmuir.3c01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compared with a single semiconductor, the heterojunction formed by two different semiconductors usually has higher light utilization and better photoelectric performance. By using stable TiO2 nanotubes as the main subject, CdSe/TiO2NTs heterojunctions were synthesized by a hydrothermal method. XRD, TEM, SEM, PL, UV-vis, and EIS were used to characterize the fabricated CdSe/TiO2NTs. Under visible light irradiation, CdSe/TiO2NTs heterojunctions exhibited a higher absorption intensity and lower degree of photogenerated carrier recombination than TiO2. The electrons and holes were proven to be effectively separated in this heterojunction via theoretical calculation. Under CdSe/TiO2NTs' optimal conditions, the glucose concentrations (10-90 μM) had a linear relationship with the photocurrent value, and the detection limit was 3.1 μM. Moreover, the CdSe/TiO2NTs sensor exhibited good selectivity and stability. Based on the experimental data and theoretical calculations, its PEC sensing mechanism was also illuminated.
Collapse
Affiliation(s)
- Yue-Liu Li
- State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Tian
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Jie Shi
- National Supercomputer Center in Tianjin, Tianjin 300457, China
| | - Jian-Xun Dong
- State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China
- Henan Nylon New Material Industry Research Institute, Pingdingshan 467000, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Geng Li
- National Supercomputer Center in Tianjin, Tianjin 300457, China
| | - Wei-Ping Huang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Min Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Lin Zhu
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Pelinescu D, Anastasescu M, Bratan V, Maraloiu VA, Negrila C, Mitrea D, Calderon-Moreno J, Preda S, Gîfu IC, Stan A, Ionescu R, Stoica I, Anastasescu C, Zaharescu M, Balint I. Antibacterial Activity of PVA Hydrogels Embedding Oxide Nanostructures Sensitized by Noble Metals and Ruthenium Dye. Gels 2023; 9:650. [PMID: 37623105 PMCID: PMC10454060 DOI: 10.3390/gels9080650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.
Collapse
Affiliation(s)
- Diana Pelinescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Veronica Bratan
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Valentin-Adrian Maraloiu
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Catalin Negrila
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Daiana Mitrea
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Jose Calderon-Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Silviu Preda
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioana Catalina Gîfu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Adrian Stan
- Techir Cosmetics SRL, Plantelor Str., 907015 Agigea, Romania;
| | - Robertina Ionescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Ileana Stoica
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Crina Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Maria Zaharescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioan Balint
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| |
Collapse
|
6
|
Xu Y, Yan B, Lai C, Wang M, Cao Y, Tu J, Chen D, Liu Y, Wu Q. High-performance Vo-ZnO/ZnS benefiting nanoarchitectonics from the synergism between defect engineering and surface engineering for photoelectrochemical glucose sensors. RSC Adv 2023; 13:19782-19788. [PMID: 37396832 PMCID: PMC10312125 DOI: 10.1039/d3ra02869k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
In this study, a ZnO/ZnS nanocluster heterojunction photoelectrode rich in surface oxygen defects (Vo-ZnO/ZnS) was prepared by applying a simple in situ anion substitution and nitrogen atmosphere annealing method. The synergism between defect and surface engineering significantly improved the photocatalysts. Given this synergism, Vo-ZnO/ZnS was endowed with a long carrier lifetime, narrow band gap, high carrier density, and high performance toward electron transfer under light conditions. Thus, Vo-ZnO/ZnS had three times the photocurrent density of ZnO under light illumination. To further evaluate its advantages in the field of photoelectric bioassay, Vo-ZnO/ZnS was applied as the photocathode of photoelectric sensor system for glucose detection. Vo-ZnO/ZnS showed excellent performance in glucose detection in various aspects, including a low detection limit, high detection sensitivity, and a wide detection range.
Collapse
Affiliation(s)
- Yongtao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou 570228 P. R. China
| | - Bingdong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou 570228 P. R. China
| | - Caiyan Lai
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou 570228 P. R. China
| | - Mingyu Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou 570228 P. R. China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou 570228 P. R. China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou 570228 P. R. China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou 570228 P. R. China
| | - Youbin Liu
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University Haikou 570311 P. R. China
| | - Qiang Wu
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University Haikou 570311 P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 P. R. China
| |
Collapse
|
7
|
Yang Z, Yang H, Wang W, Zhao H, Meng P, Xie Y, Sun Y. A flexible electrochemical sensor for simultaneous determination of glucose (Glu) and ethanol (Eth) using ZnO and Pd nanoparticles. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Qureshi A, Shaikh T, Niazi JH. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications. Analyst 2023; 148:1633-1652. [PMID: 36880521 DOI: 10.1039/d2an01690g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Semiconductor quantum dots (QDs) are a promising class of nanomaterials for developing new photoelectrodes and photoelectrochemistry systems for energy storage, transfer, and biosensing applications. These materials have unique electronic and photophysical properties and can be used as optical nanoprobes in displays, biosensors, imaging, optoelectronics, energy storage and energy harvesting. Researchers have recently been exploring the use of QDs in photoelectrochemical (PEC) sensors, which involve exciting a QD-interfaced photoactive material with a flashlight source and generating a photoelectrical current as an output signal. The simple surface properties of QDs also make them suitable for addressing issues related to sensitivity, miniaturization, and cost-effectiveness. This technology has the potential to replace current laboratory practices and equipment, such as spectrophotometers, used for testing sample absorption and emission. Semiconductor QD-based PEC sensors offer simple, fast, and easily miniaturized sensors for analyzing a variety of analytes. This review summarizes the various strategies for interfacing QD nanoarchitectures for PEC sensing, as well as their signal amplification. PEC sensing devices, particularly those used for the detection of disease biomarkers, biomolecules (glucose, dopamine), drugs, and various pathogens, have the potential to revolutionize the biomedical field. This review discusses the advantages of semiconductor QD-based PEC biosensors and their fabrication methods, with a focus on disease diagnostics and the detection of various biomolecules. Finally, the review provides prospects and considerations for QD-based photoelectrochemical sensor systems in terms of their sensitivity, speed, and portability for biomedical applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Tayyaba Shaikh
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
9
|
Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric Sensors for Chemical and Biological Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052749. [PMID: 36904948 PMCID: PMC10007638 DOI: 10.3390/s23052749] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
Colorimetric sensors have been widely used to detect numerous analytes due to their cost-effectiveness, high sensitivity and specificity, and clear visibility, even with the naked eye. In recent years, the emergence of advanced nanomaterials has greatly improved the development of colorimetric sensors. This review focuses on the recent (from the years 2015 to 2022) advances in the design, fabrication, and applications of colorimetric sensors. First, the classification and sensing mechanisms of colorimetric sensors are briefly described, and the design of colorimetric sensors based on several typical nanomaterials, including graphene and its derivatives, metal and metal oxide nanoparticles, DNA nanomaterials, quantum dots, and some other materials are discussed. Then the applications, especially for the detection of metallic and non-metallic ions, proteins, small molecules, gas, virus and bacteria, and DNA/RNA are summarized. Finally, the remaining challenges and future trends in the development of colorimetric sensors are also discussed.
Collapse
Affiliation(s)
- Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Huan-Huan Yu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Chen H, Fan J, Chen X, Ma Z, Zhang L, Chen X. Gold Nanoparticle (Au NP)-Decorated Ionic Liquid (IL) Based Liposome: A Stable, Biocompatible, and Conductive Biomimetic Platform for the Fabrication of an Enzymatic Electrochemical Glucose Biosensor. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2153256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hongzhuang Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Jialin Fan
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xue Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhenkuan Ma
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
11
|
Melnikov P, Bobrov A, Marfin Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers (Basel) 2022; 14:polym14204448. [PMID: 36298026 PMCID: PMC9611646 DOI: 10.3390/polym14204448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications.
Collapse
Affiliation(s)
- Pavel Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
- Correspondence:
| | - Alexander Bobrov
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
| | - Yuriy Marfin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
- Pacific National University, 136 Tikhookeanskaya Street, 680035 Khabarovsk, Russia
| |
Collapse
|
12
|
Wu B, Cheng Z, Hou Y, Chen Q, Wang X, Qiao B, Chen D, Tu J. Engineering exposed vertical nano-TiO 2 (001) facets/BiOI nanosheet heterojunction film for constructing a satisfactory PEC glucose oxidase biosensor. RSC Adv 2022; 12:19495-19504. [PMID: 35865570 PMCID: PMC9255561 DOI: 10.1039/d2ra03070e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022] Open
Abstract
In the field of photoelectrochemical (PEC) enzyme biosensors, constructing efficient photoelectrodes, in which the recombination of photogenerated carriers is an important factor affecting the performance, is of great significance. Herein, to enhance the separation efficiency of photogenerated carriers, titanium dioxide (TiO2) nanosheet (NS)/bismuth oxyiodide (BiOI) NS/glucose oxidase (GOx) composites were prepared via hydrothermal and solvothermal methods. Single-crystal anatase TiO2 NSs with a high percentage of (001) facets lead to better photocarrier separation due to heterojunctions between facets. After coupling with BiOI NSs, the photoelectrochemical performance of the electrode was greatly improved. The photogenerated electrons from TiO2 and BiOI gathered at TiO2 (101) and were exported through the fluorine-doped tin oxide (FTO) substrate to generate electrical signals. Photogenerated holes were transferred to TiO2 (001) and BiOI to participate in the enzymatic reaction, showing the outstanding separation of electrons and holes. The prepared TiO2 NS/BiOI NS/GOx glucose biosensor achieved satisfactory results, with sensitivity of 14.25 μA mM−1 cm−2, a linear measurement range of 0–1 mM, and a limit of detection (3S/N) of 0.01 mM in phosphate buffered saline (PBS) at a pH of 7.4. The mechanism for the efficient separation of photogenerated carriers based on the facet heterojunctions introduced in this paper also provides new insights into other optoelectronic biosensors. Demonstration of the mechanism based on the synergistic effect of TiO2 facet heterojunctions and TiO2/BiOI heterojunctions to promote efficient separation of photogenerated carriers.![]()
Collapse
Affiliation(s)
- Baiqiang Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University Haikou 570228 China
| | - Zike Cheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University Haikou 570228 China
| | - Yao Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University Haikou 570228 China
| | - Qian Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Xiaohong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University Haikou 570228 China
| | - Bin Qiao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University Haikou 571199 China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University Haikou 570228 China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University Haikou 570228 China
| |
Collapse
|
13
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|