1
|
Zeng Y, Peng M, Zhou H, Huang X. Preparation of monolith-based adsorbent mingled with metal organic framework for field microextraction of organic pollutants with significantly distinct properties in water. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137982. [PMID: 40120264 DOI: 10.1016/j.jhazmat.2025.137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Field co-extraction of compounds with significantly distinct properties is essential and challenging in the monitoring of organic pollutants. In current study, nitrophenols, aromatic amines and parabens were employed as acidic, basic and neutral model analytes, respectively. To co-capture the analytes efficiently, porous monolith mingled with metal-organic frameworks (MOFs@PM) was prepared by incorporating MIL-53(Al) during in-situ polymerization of ethylene glycol dimethacrylate (EDMA). The prepared MOFs@PM was utilized as the adsorbent of lab-made portable in-tip microextraction apparatus (MEA) for field co-capture of investigated pollutants. Due to the incorporation of MOFs, the extraction efficiencies obtained on MOFs@PM rose by 22.4-192 % over the poly (EDMA) which MOFs did not be mingled. The co-extraction mechanism was studied by molecular simulation method and batch experiments. Under the beneficial conditions, the developed MOFs@PM/MEA technique was used to field separate and simultaneously capture studied analytes and followed by quantified with HPLC. The achieved enhancement factors and limits of detection were in the ranges of 136-172 and 0.011-0.029 μg/L, respectively. Additionally, the reliability and accuracy of the proposed approach was evaluated by recovery and confirmation experiments. Satisfactory results confirm the superior co-extraction performance of MOFs@PM and the wide application prospect of MOFs@PM/MEA technique in field sample preparation.
Collapse
Affiliation(s)
- Yufeng Zeng
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Mingming Peng
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Hongbi Zhou
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Xiaojia Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| |
Collapse
|
2
|
Murtaza G, Ahmed MI, Yu K, An X, Ahmad Shah SS, Sohail M. Challenges and outlooks for the polyoxometalates, metal-organic frameworks (POMs-MOFs) hybrid materials in water treatment technologies. ENVIRONMENTAL RESEARCH 2025; 272:121156. [PMID: 39971112 DOI: 10.1016/j.envres.2025.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
The importance of water for life is undeniable. However, modern industrial and urban practices have led to the pollution of water reservoirs. Efficient wastewater purification is crucial for sustainability, and several materials with specific characteristics have been investigated to improve water quality. The integration of polyoxometalates (POMs) into metal-organic frameworks (MOFs) holds significant potential for water treatment applications due to their complementary properties. POMs are renowned for their high catalytic activity, redox versatility, and resistance to harsh environments, while MOFs offer high porosity, tunable chemical environments, and enhanced stability. When immobilized within MOF structures, POMs can exhibit improved processability and recyclability, overcoming limitations such as leaching and aggregation. The resulting composites maintain the catalytic efficiency of POMs and leverage the structural and adsorptive characteristics of MOFs to target contaminants in water. These hybrid systems are up-and-coming with improved characteristics where the synergy between the POM's catalytic sites and the MOF's porous network can facilitate efficient degradation of organic pollutants, heavy metal sequestration, and enhanced adsorption of micropollutants, paving the way for sustainable water purification technologies. This review encapsulates the latest advancements in POM-MOF composites, discussing the predominant synthesis strategies and their applications, particularly in wastewater treatment. Furthermore, POM-MOF composite nanoplatforms for wastewater treatment are explored based on their high stability and large specific surface area, making them an ideal choice for waste-water treatment.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, 44000, Islamabad, Pakistan
| | - Muhammad Ibrar Ahmed
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kewei Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, 44000, Islamabad, Pakistan.
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, 44000, Islamabad, Pakistan.
| |
Collapse
|
3
|
Wang X, Jin S, Shi L, Zhang N, Guo J, Zhang D, Liu Z. Biomimetic Channels Design in Metal-Organic Framework Enabling Highly Lithium-Ion Conduction for Lithium-Metal Batteries. SMALL METHODS 2025; 9:e2400968. [PMID: 39351807 DOI: 10.1002/smtd.202400968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/14/2024] [Indexed: 03/22/2025]
Abstract
Solid-state electrolytes (SSEs) based on metal-organic frameworks (MOFs) are an ideal material for constructing high-performance lithium metal batteries (LMBs). However, the low ion conductivity and poor interface contact (especially at low temperatures) still seriously hinder its further application. Herein, inspired by the Na+/K+ conduction in biology systems, a series (NH2, OH, NH-(CH2)3-SO3H)-modified MIL-53-X as SSEs is reported. These functional groups are similar to anions suspended in biological ion channels, partially repelling anions while allowing cations to be effectively transported through pore channels. Subsequently, MIL-53-X with hierarchical pore structure (H-MIL-53-X) is obtained by introducing lauric acid as a regulator, and then the effects of structural design and morphology control on its performance are explored. The conductivity of H-MIL-53-NH-SO3Li with multi-level pore structure and modified by sulfonic acid groups reached 2.2 × 10-3 S cm-1 at 25 °C, lithium-ion transference number of 0.78. Besides, the H-MIL-53-NH-SO3Li still has an excellent conductivity of 10-4 S cm-1 at -40 °C. Additionally, LiFePO4/Li batteries equipped with H-MIL-53-NH-SO3Li SSEs could operate stably for over 200 cycles at 0.1 C. The strategy of combining structural and morphological design of MOFs with biomimetic ion channels opens new avenues for the design of high-performance SSEs.
Collapse
Affiliation(s)
- Xin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Sheng Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lu Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Nan Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jia Guo
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Dianqu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
4
|
Yoon S, Park J, Police AKR, Choe JK, Bae S. Enhanced removal of perfluorooctanoic acid by aluminum-based metal-organic frameworks prepared by bauxite residue. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136687. [PMID: 39615391 DOI: 10.1016/j.jhazmat.2024.136687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
Upcycling solid waste into advanced adsorbents is a sustainable approach in the field of waste valorization and wastewater treatment. In this study, we developed a phase-controlled synthesis method for a single phase of an aluminum-based metal-organic framework (MOF) using an aluminum source (Al3+) in red mud (RM), and demonstrated its potential for aqueous perfluorooctanoic acid (PFOA) removal. By optimizing the pre-treatment process, the selective extraction of aluminum ion from RM was achieved. Subsequently, three distinct aluminum-based MOFs (i.e., MIL-53(Al), MIL-96(Al), and MIL-100(Al)) were synthesized by controlling the hydrothermal synthesis conditions and using specific organic linkers (terephthalic acid and trimesic acid). For MOFs based on trimesic acid, the initial Al3+: trimesic acid ratio and duration of hydrothermal synthesis exerted an observable influence on the formation of the second building unit of the MOF. By manipulating these factors, we could precisely control isolated MIL-96(Al) and MIL-100(Al). The PFOA adsorption results revealed a remarkable increase in the adsorption capacity (Qmax: 131.58 mg/g) on MIL-100(Al) compared with that on MIL-96(Al). This was due to its large surface area (1189.15 m2/g) and the presence of numerous hydrophilic sites favorable for interaction with the carboxylic group of PFOA. Furthermore, a computational investigation revealed that in addition to direct Lewis acid-base interaction between PFOA and aluminum sites, the major mechanism involved the formation of a complex induced by ion exchange between coordinated NO3- and PFOA anions.
Collapse
Affiliation(s)
- Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea
| | - Anil Kumar Reddy Police
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Guo TT, Hua BL, Guo ZY, Zhang MQ, Wang JR, An YY, Li XN, Yan JZ. A copper(II)-based metal-organic framework: electrochemical sensing of Cd(II) and Pb(II) and adsorption of organic dyes. Dalton Trans 2025; 54:1393-1401. [PMID: 39625226 DOI: 10.1039/d4dt02374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A new inorganic-organic hybrid complex, namely [Cu3L2(DMF)2]·H2O (Cu-L), has been synthesized using a sulfur-rich ligand, 3,3',3''-(1,3,5-triazine-2,4,6-triyltrisulfanediyl)tripropanoic acid (H3L) and metal cations under hydrothermal conditions. The metal atoms are interconnected to form a paddle-wheel-like structure, which is ultimately linked to the ligands to create a three-dimensional architecture. Cu-L, employed to fabricate an electrochemical sensor denoted as Cu-L@GCE (glassy carbon electrode), is capable of simultaneously detecting Cd2+ and Pb2+ at approximately -0.82 V and -0.58 V (vs. Ag/AgCl reference), exhibiting high sensitivity and selectivity. Cu-L@GCE demonstrates broad linear detection ranges of 8-28 μM for Cd2+ and 2-14 μM for Pb2+, along with low limit of detection (LOD) values of 0.01363 μM and 0.00212 μM, respectively. Furthermore, Cu-L@GCE achieves LOD values of 0.00209 μM and 0.000034 μM when detecting both ions simultaneously. The constructed sensor successfully detects Cd2+ and Pb2+ in mineral water, tap water, and river water with satisfactory recoveries. Additionally, the adsorption performance for organic dyes has been studied in detail using Cu-L as an adsorbent. The results indicate good adsorption selectivity for methylene blue (MB) and neutral red (NR) compared to methyl orange (MO) and rhodamine B (RhB) molecules.
Collapse
Affiliation(s)
- Ting-Ting Guo
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| | - Bing-Long Hua
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| | - Zhuo-Yi Guo
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| | - Meng-Qi Zhang
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| | - Jin-Rong Wang
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| | - Yan-Yan An
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| | - Xiao-Nan Li
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| | - Juan-Zhi Yan
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P.R. China.
| |
Collapse
|
6
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
7
|
Gamonchuang J, Meeklinhom S, Muangnapoh T, Imhan C, Chantho V, Sillapaprayoon S, Pimtong W, Warin C, Isanapong J, Ratanatawanate C, Kumnorkaew P. Eco-Friendly and Low-Cost Synthesis of Transparent Antiviral- and Antibacterial-Coated Films Based on Cu 2O and MIL-53(Al). ACS APPLIED BIO MATERIALS 2024; 7:7280-7291. [PMID: 39450473 DOI: 10.1021/acsabm.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This research presents the development of an innovative antimicrobial coating consisting of cuprous oxide (Cu2O) integrated with the metal-organic framework MIL-53(Al) through an eco-friendly and low-cost synthesis method that employs glucose as a reducing agent under mild conditions. The microstructural properties of the composite materials were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The antibacterial efficacy of the Cu2O-MIL-53(Al) (CuM) composite was assessed against Escherichia coli and Staphylococcus aureus, achieving a reduction efficacy of 99.99% with 5% copper incorporated into the MIL-53(Al) framework within a contact time of 24 h. The incorporation of CuM into a macromolecular host matrix of polyurethane-carboxymethylcellulose (CuM/PUD-CMC), applied as a coating on a low-cost plastic film, produced a transparent film with 87.10% transparency. This coating demonstrated a 99.99% reduction in E. coli and S. aureus populations within a contact time of 24 h. The CuM/PUD-CMC coating demonstrated substantial antiviral efficacy, achieving inactivation rates of 99.35% for Human Coronavirus 229E, 99.40% for Influenza A virus, and 97.76% for Enterovirus 71 within a contact time of 5 min. The CuM nanoparticles exhibited low toxicity toward zebrafish while effectively eradicating bacteria and inactivating viruses. The proposed low-cost material and coating method demonstrate significant potential as a broad-spectrum antimicrobial and antiviral agent, highlighting its suitability for various applications in biomedical and healthcare formulations.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sorrawit Meeklinhom
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Tanyakorn Muangnapoh
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chalida Imhan
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Varissara Chantho
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Choochart Warin
- Nanocharacterization Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jantiya Isanapong
- Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bang Sue, Bangkok 10800, Thailand
| | - Chalita Ratanatawanate
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pisist Kumnorkaew
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
8
|
Lv W, Song Y, Guo R, Liu N, Mo Z. Metal-organic frame material encapsulated Rhodamine 6G: A highly sensitive fluorescence sensing platform for the detection of picric acid contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124355. [PMID: 38701575 DOI: 10.1016/j.saa.2024.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
As a water pollutant with excellent solubility, 2,4,6-trinitrophenol (also known as picric acid, PA) poses a potential threat to the natural environment and human health, so it is crucial important to detect PA in water. In this study, a novel composite material (MIL-53(Al)@R6G) was successfully synthesized by encapsulating Rhodamine 6G into a metal-organic frame material, which was used for fluorescence detection of picric acid (PA) in water. The composite exhibits bright yellow fluorescence emission with a fluorescence quantum yield of 58.23 %. In the process of PA detection, the composite has excellent selectivity and anti-interference performance, and PA can significantly quench the fluorescence intensity of MIL-53(Al)@R6G. MIL-53(Al)@R6G has the advantages of fast detection time (20 s), wide linear range (1-100 µM) and low detection limit (4.8 nM). In addition, MIL-53(Al)@R6G has demonstrated its potential for the detection of PA in environmental water samples with satisfactory results.
Collapse
Affiliation(s)
- Wenbo Lv
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yafang Song
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
9
|
Bera P, Mukherjee S, Venturi DM, Ruser N, Biswas S. Reusable MOF-Coated Chitosan@Paper Strip Composite for Real-Time Monitoring of Pesticide Pendimethalin and Organoarsenic Feed Additive Roxarsone Levels in Environmental Water, Food, and Vegetable Samples. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35245-35254. [PMID: 38935865 DOI: 10.1021/acsami.4c08083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
An alarming increase in the use of pesticides and organoarsenic compounds and their toxic impacts on the environment have inspired us to develop a selective and highly sensitive sensor for the detection of these pollutants. Herein, a bio-friendly, low-cost Al-based luminescent metal-organic framework (1')-based fluorescent material is demonstrated that helps in sustaining water quality by rapid monitoring and quantification of a long-established pesticide (pendimethalin) and a widely employed organoarsenic feed additive (roxarsone). A pyridine-functionalized porous aluminum-based metal-organic framework (Al-MOF) was solvothermally synthesized. After activation, it was used for fast (<10 s) and selective turn-off detection of roxarsone and pendimethalin over other competitive analytes. This is the first MOF-based recyclable sensor for pendimethalin with a remarkably low limit of detection (LOD, 14.4 nM). Real-time effectiveness in detection of pendimethalin in various vegetable and food extracts was successfully verified. Moreover, the aqueous-phase recyclable detection of roxarsone with an ultralow detection limit (13.1 nM) makes it a potential candidate for real-time application. The detection limits for roxarsone and pendimethalin are lower than the existing luminescent material based sensors. Furthermore, the detection of roxarsone in different environmental water and a wide pH range with a good recovery percentage was demonstrated. In addition, a cheap and bio-friendly 1'@chitosan@paper strip composite was prepared and successfully employed for the hands-on detection of pendimethalin and roxarsone. The turn-off behavior of 1' in the presence of pendimethalin and roxarsone was examined systematically, and plausible mechanistic pathways were proposed with the help of multiple experimental evidences.
Collapse
Affiliation(s)
- Priti Bera
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | - Srijan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | | | - Niklas Ruser
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| |
Collapse
|
10
|
Molavi H, Salimi MS. Green Synthesis of Cerium-Based Metal-Organic Framework (Ce-UiO-66 MOF) for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38032754 DOI: 10.1021/acs.langmuir.3c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Green synthesis of metal-organic frameworks (MOFs) in aqueous solutions under ambient conditions with reduced production costs and environmental effects is an efficient technique to transfer lab-scale production to industrial large scale. Hence, this work proposes a green, low-cost, sustainable, rapid, and innovative synthetic strategy to produce cerium-based (Ce-UiO-66) MOFs under ambient conditions in the presence of water as a green solvent. This synthetic strategy exhibits great potential compared to conventional solvothermal synthetic techniques, and it does not need external activation energy and organic solvents, which can achieve the standards of green chemistry. Ce-UiO-66 MOF was synthesized successfully and utilized as a green adsorbent to efficiently eliminate anionic Congo Red (CR) dye from dye-containing wastewater. The experimental adsorption results were well matched to the pseudo-second-order kinetic and Langmuir isotherm models, in which the maximum CR adsorption capacity was measured to be about 285.71 mg/g. To evidence the applicability of Ce-UiO-66 MOFs in CR adsorption, the CR adsorption reaction was performed in the presence of interfering pollutants [e.g., salts (NaCl, KCl, and MgCl2) and cationic organic dyes (Malachite Green (MG) and Methylene Blue (MB)], where the results prove the promising adsorption performances of Ce-UiO-66 MOFs toward CR dye. Interestingly, the synthesized adsorbent exhibited high structural stability during repeated adsorption-desorption cycles, where the surface area of MOFs decreased from 555 to 376 m2/g after three cycles, while its CR adsorption capacity decreased by only 10% compared to that of the fresh adsorbent. All these outstanding properties indicate that the Ce-UiO-66 MOFs will be an effective adsorbent for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| |
Collapse
|
11
|
Wang J, Zhang Y, Liu F, Liu Y, Wang L, Gao G. Preparation of a Multifunctional and Multipurpose Chitosan/Cyclodextrin/MIL-68(Al) Foam Column and Examining Its Adsorption Properties for Anionic and Cationic Dyes and Sulfonamides. ACS OMEGA 2023; 8:32017-32026. [PMID: 37692232 PMCID: PMC10483522 DOI: 10.1021/acsomega.3c03897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
A multifunctional cylindrical hybrid foam column, referred to as the chitosan/cyclodextrin/MIL-68(Al) (CS/CD/MIL-68(Al)) foam column, was prepared for the first time. The prepared foam column could be used for the adsorption/removal of hydrophilic and hydrophobic contaminants by different forms. Here, it was placed in hydrophilic dye solutions to investigate the adsorption behavior of methylene blue and trypan blue. The adsorption process followed the pseudo-second-order kinetic model with R2 ranging from 0.9983 to 0.9998 for methylene blue and from 0.9993 to 1.0000 for trypan blue, and the adsorption process was consistent with the Langmuir isothermal model with R2 greater than 0.96. The RL values for methylene blue and trypan blue were 0.8871 and 0.5366, respectively, which were present between 0 and 1, indicating that the adsorption behaviors of the two dyes onto the CS/CD/MIL-68(Al) foam column were favorable. The maximum adsorption capacities (Qm) of methylene blue and trypan blue were 60.61 and 454.55 mg/g at 298 K, respectively. Also, the CS/CD/MIL-68(Al) foam column was spun into a syringe and used to adsorb trace hydrophobic sulfonamides from water in the form of filtration. The porous structure impeded the need for any external force and equipment, allowing the water sample to pass through the foam column smoothly. The conditions of the CS/CD/MIL-68(Al) foam column were optimized. The adsorption was carried out under the condition of pH = 4, the amount of the adsorbent was two foam columns, and no salt was added. It was found that the removal rate of the CS/CD/MIL-68(Al) foam column for six sulfonamides was 100%, and it could be reused at least five times. Therefore, this CS/CD/MIL-68(Al) foam column had a simple preparation method, offered a flexible and diverse form of use, was nonpolluting, biodegradable, and reusable, and could have a wider application in the field of environmental pollutant removal and adsorption.
Collapse
Affiliation(s)
- Jing Wang
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, No. 4655, University Road, University Science Park, Changqing District, Jinan 250355, Shandong Province, P. R. China
| | - Yong Zhang
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Fubin Liu
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Ying Liu
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Litao Wang
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| | - Guihua Gao
- School
of Pharmacy, Shandong University of Traditional
Chinese Medicine, No. 4655, University Road, University Science Park, Changqing District, Jinan 250355, Shandong Province, P. R. China
- School
of Pharmacy, Jining Medical College, No. 669, Xueyuan Road, Donggang
District, Rizhao 276826, Shandong Province, P. R. China
| |
Collapse
|
12
|
Shi Q, Wang W, Zhang H, Bai H, Liu K, Zhang J, Li Z, Zhu W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. BIORESOURCE TECHNOLOGY 2023; 383:129213. [PMID: 37230330 DOI: 10.1016/j.biortech.2023.129213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this study, a high-performance porous adsorbent was prepared from biochar through a simple one-step alkali-activated pyrolysis treatment of walnut shells, and it was effective in removing tetracycline (TC). The specific surface area (SSA) of potassium hydroxide-pretreated walnut shell-derived biochar pyrolyzed at 900°C (KWS900) increased remarkably compared to that of the pristine walnut shell and reached 1713.87±37.05 m2·g-1. The maximum adsorption capacity of KWS900 toward TC was 607.00±31.87 mg·g-1. The pseudo-second-order kinetic and Langmuir isotherm models were well suited to describe the TC adsorption process onto KWS900. The KWS900 exhibited high stability and reusability for TC adsorption in the presence of co-existing anions or cations over a wide pH range of 1.0-11.0. Further investigations demonstrated that the proposed adsorption mechanism involved pore filling, hydrogen bonding, π-π stacking, and electrostatic interaction. These findings provide a valuable reference for developing biochar-based adsorbents for pollutant removal.
Collapse
Affiliation(s)
- Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wangbo Wang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongmin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- School of literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
13
|
Chen L, Liao S, Yu D, Li L, Mu T, Xue Z. Innovative Aryl-Based Hydrophobic Deep Eutectic Solvent for Efficient Removal of Dyes and Nanoplastics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|