1
|
Zheng S, Wang C, Zhao H, Dai Q, Mao W, Liu P, Lu J, Ju J, Huang M. Toxicological analysis of Eisenia fetida in soil under the coexistence of rockwool substrate andtricyclazole. CHEMOSPHERE 2024; 363:142850. [PMID: 39032728 DOI: 10.1016/j.chemosphere.2024.142850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
This study investigated the combined effects of rockwool, a novel seedling substrate, and tricyclazole (TCA) on the bioavailability of TCA to Eisenia fetida. The single addition of rockwool and TCA alone to the soil inhibited the growth of E. fetida. A high concentration (300 mg·L-1) of TCA significantly decreased the biomass of E. fetida. The addition of 20-mesh rockwool reduced this effect on earthworm biomass by decreasing the soil TCA through adsorption, effectively mitigating TCA bioaccumulation in earthworms. A mechanistic analysis showed that the Mg-O functional group on the rockwool surface combined with the CC functional group in TCA to generate Mg-O-C, and the adsorption process was dominated by chemisorption. Toxicology experiments demonstrated that malondialdehyde and cellulase could be used as biomarkers of inhibitory effects of combined rockwool and TCA in soil on E. fetida. Macrogenomic analyses revealed that small particle sizes and high concentrations of rockwool caused co-stress effects on earthworms when TCA was present. When the particle size of rockwool increased, the toxic effect of TCA on earthworms instead decreased at higher rockwool concentrations. Therefore, in practical agricultural production, the particle size of rockwool can be controlled to realize the adsorption of TCA and reduce the toxic effects of TCA and rockwool on earthworms.
Collapse
Affiliation(s)
- Shengyang Zheng
- College of Environmental Science and Engineering/Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou University, Yangzhou, 225127, China
| | - Chenzhe Wang
- College of Environmental Science and Engineering/Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou University, Yangzhou, 225127, China
| | - Haitao Zhao
- College of Environmental Science and Engineering/Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou University, Yangzhou, 225127, China
| | - Qigen Dai
- Joint International Research Laboratory Agricultural & Agricultural Product Safety, Ministry Education China, Yangzhou University, Yangzhou, 225009, China
| | - Wei Mao
- Yangzhou Cultivated Land Quality Protection Station, Yangzhou, 225101, China
| | - Ping Liu
- College of Environmental Science and Engineering/Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou University, Yangzhou, 225127, China
| | - Jianbing Lu
- College of Environmental Science and Engineering/Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou University, Yangzhou, 225127, China
| | - Jing Ju
- College of Environmental Science and Engineering/Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou University, Yangzhou, 225127, China.
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
2
|
Wang H, Huang S, Liao L, Mo S, Zhou X, Fan Y. Performance and mechanism analysis of sludge-based biochar loaded with Co and Mn as photothermal catalysts for simultaneous removal of acetone and NO at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2891-2906. [PMID: 38082041 DOI: 10.1007/s11356-023-31401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Replacing NH3 in NH3-SCR with VOCs provides a new idea for the simultaneous removal of VOCs and NOx, but the technology still has urgent problems such as high cost of catalyst preparation and unsatisfactory catalytic effect in the low-temperature region. In this study, biochar obtained from sewage sludge calcined at different temperatures was used as a carrier, and different Co and Mn injection ratios were selected. Then, a series of sludge-based biochar (SBC) catalysts were prepared by a one-step hydrothermal synthesis method for the simultaneous removal of acetone and NO in a low-temperature photothermal co-catalytic system with acetone replacing NH3. The characterization results show that heat is the main driving force of the reaction system, and the abundance of Co and Mn atoms in high valence states, surface-adsorbed oxygen, and oxygen lattice defects in the catalyst are the most important factors affecting the performance of the catalyst. The performance test results showed that the optimal pyrolysis temperature of sludge was 400 °C, the optimal dosing ratio of Co and Mn was 4:1, and the catalyst achieved 42.98% and 52.41% conversion of acetone and NO, respectively, at 240 °C with UV irradiation. Compared with the pure SBC without catalytic effect, the SBC loaded with Co and Mn gained the ability of simultaneous removal of acetone and NO through the combined effect of multiple factors. The key reaction steps for the catalytic conversion of acetone and NO on the catalyst surface were investigated according to the Mars-van Krevelen (MvK) mechanism, and a possible mechanism was proposed. This study provides a new strategy for the resource utilization of sewage sludge and the preparation of photothermal catalysts for the simultaneous removal of acetone and NO at low cost.
Collapse
Affiliation(s)
- Hongqiang Wang
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Sheng Huang
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Lei Liao
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Shengpeng Mo
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Xiaobin Zhou
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Yinming Fan
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China.
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541000, China.
| |
Collapse
|
3
|
Lu W, Cai H, Han X, Yang K, Wang H, Wu X, Liu L. Sustainable Biochar Nanosheets Derived from Sweet Sorghum Residues via Superbase Pretreatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15942-15949. [PMID: 37914676 DOI: 10.1021/acs.langmuir.3c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Two-dimensional (2D) sheet-like biochar as promising alternatives to graphene nanosheets has gained significant attention in materials science while being highly restricted by its complicated synthetic steps. In this study, the dimethyl sulfoxide/potassium hydroxide (DMSO/KOH) superbase system was first used to pretreat sweet sorghum residues (SS) and then carbonized to prepare sheet-like biochar. Ascribing to the strong nucleophilicity of DMSO/KOH, a synergistic effect was achieved by partially removing non-cellulosic components in SS and swelling the amorphous region of cellulose, leaving more layered cellulose behind (∼46.5 wt %), which was favorable for the formation of 2D biochar nanosheets with high graphitization degrees (∼93.1%). This strategy was also suitable for other biomass fibers (e.g., straw, wood powders, and nuclear shells) to obtain sheet-like biochar. The resulting sheet-like biochar could be compounded with cellulose nanofibers to achieve the structural design of composites and solve the molding problem of biochar, which was beneficial for dyeing wastewater treatment. Thus, this work provides insight into a simple strategy for developing 2D ultrathin sheet-like biochar from sustainable biomass wastes.
Collapse
Affiliation(s)
- Wenyu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255000, China
| | - Hongzhen Cai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255000, China
| | - Xiangsheng Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255000, China
| | - Keyan Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255000, China
| | - Hui Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255000, China
| | - Xun Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255000, China
| | - Li Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255000, China
| |
Collapse
|
4
|
Cao N, Ji J, Li C, Yuan M, Guo X, Zong X, Li L, Ma Y, Wang C, Pang S. Rapid and efficient removal of multiple aqueous pesticides by one-step construction boric acid modified biochar. RSC Adv 2023; 13:8765-8778. [PMID: 36936844 PMCID: PMC10018371 DOI: 10.1039/d2ra07684e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Tricyclazole, propiconazole, imidacloprid, and thiamethoxam are commonly used pesticides in paddy fields. It is necessary and practical to remove pesticides from the water environment because the low utilization rate of pesticides will produce residues in the water environment. It is known that there are few studies on the preparation of biochar adsorption pesticides by the walnut shell and few studies on the removal of tricyclazole and propiconazole. Based on this, this paper used the walnut shell as raw material and boric acid as an activator to prepare biochar by the one-step method. The boric acid modified walnut shell biochar (WAB4) with a specific surface area of 640.6 m2 g-1, exhibited the high adsorption capacity of all four pesticides (>70%) at pH 3-9. The adsorption capacities of tricyclazole, propiconazole, imidacloprid, and thiamethoxam were 171.67, 112.27, 156.40, and 137.46 mg g-1, respectively. The adsorption kinetics fitted the pseudo-second-order kinetic model and the adsorption isotherm curves conformed to the Freundlich isotherm model. The adsorption of pesticides by WAB4 was associated with hydrogen bonding, pore filling, hydrophobic effects, and π-π interactions. More significantly, WAB4 has excellent adsorption capacity compared to other adsorbents for real water samples. Finally, walnut shell biochar has no significant acute toxicity to Daphnia magna. This work shows that walnut shell-based biochar has a good effect on the removal of pesticides at a wide range of pH and is economical and safe, providing a new idea for the removal of pesticides in water.
Collapse
Affiliation(s)
- Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Meng Yuan
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| |
Collapse
|
5
|
Adsorption Characteristics and Mechanism of Methylene Blue in Water by NaOH-Modified Areca Residue Biochar. Processes (Basel) 2022. [DOI: 10.3390/pr10122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To solve the water pollution problem caused by methylene blue (MB), areca residue biochar (ARB) was prepared by pyrolysis at 600 °C, and modified areca residue biochar (M-ARB) was obtained by modifying ARB with 1.5 mol/L NaOH, and they were utilized to adsorb and eliminate MB from water. The structural characteristics of ARB and M-ARB were examined, and the main influencing factors and adsorption mechanism of MB adsorption process were investigated. The outcomes demonstrated an increase in M-ARB’s specific surface area and total pore volume of 66.67% and 79.61%, respectively, compared with ARB, and the pore structure was more abundant, and the content of oxygen element was also significantly increased. When the reaction temperature was 25 °C, starting pH of the mixture was 10, the initial MB concentration was 50 mg/L, the ARB and M-ARB dosages were 0.07 g/L and 0.04 g/L, respectively, the adsorption equilibrium was achieved at about 210 min, and the elimination rate for MB exceeded 94%. The adsorption behaviors of ARB and M-ARB on MB were more in line with the Langmuir isotherm model (R2 > 0.95) and the quasi-secondary kinetic model (R2 > 0.97), which was characterized by single-molecule layer chemisorption. The highest amount of MB that may theoretically be absorbed by M-ARB in water ranging from 136.81 to 152.72 mg/g was 74.99–76.59% higher than that of ARB. The adsorption process was a spontaneous heat absorption reaction driven by entropy increase, and the adsorption mechanism mainly involved electrostatic gravitational force, pore filling, hydrogen bonding, and π–π bonding, which was a complex process containing multiple mechanisms of action. NaOH modification can make the ARB have more perfect surface properties and more functional group structures that can participate in the adsorption reaction, which can be used as an advantageous adsorption material for MB removal in water.
Collapse
|
6
|
Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment. WATER 2022. [DOI: 10.3390/w14142206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This paper presents an in-depth characterization of a raw industrial sludge (IS-R) and its KOH-activated biochar pyrolyzed at 750 °C (IS-KOH-B) followed by their application to remove a cationic dye from aqueous solution. Materials characterization shows that compared to the IS-R, the IS-KOH-B has improved structural, textural, and surface chemical properties. In particular, the IS-KOH-B’s BET surface area and total pore volume are about 78 and 6 times higher than those found for the IS-R, respectively. The activated biochar efficiently retained the cationic dye under wide experimental conditions. Indeed, for an initial dye concentration of 50 mg L−1, removal yields were assessed to be more than 92.5%, 93.5%, and 97.8% for a large pH range (4–10), in the presence of high contents of competing cations (3000 mg L−1 of Ca2+, Mg2+, Na+, and K+), and a low used adsorbent dose (1 g L−1), respectively. The Langmuir’s adsorption capacities were 48.5 and 65.9 mg g−1 for of IS-R and IS-KOH-B, respectively, which are higher than those reported for various adsorbents in the literature. The dye removal was found to be monolayer, spontaneous, and endothermic for both the adsorbents. Moreover, this removal process seems to be controlled by chemical reactions for IS-KOH-B whereas by both physico–chemical reactions for IS-R. This study demonstrates that the raw industrial sludge and especially its KOH-activated derived biochar could be considered as promising adsorbents for the removal of dyes from aqueous solutions.
Collapse
|