Proniewicz E, Olszewski TK. SERS/TERS Characterization of New Potential Therapeutics: The Influence of Positional Isomerism, Interface Type, Oxidation State of Copper, and Incubation Time on Adsorption on the Surface of Copper(I) and (II) Oxide Nanoparticles.
J Med Chem 2022;
65:4387-4400. [PMID:
35230122 PMCID:
PMC8919263 DOI:
10.1021/acs.jmedchem.2c00031]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The aim of this study
was to investigate how the oxidation state
of copper (Cu(I) vs Cu(II)), the nature of the interface (solid/aqueous
vs solid/air), positional isomerism, and incubation time affect the
functionalization of the surface of copper oxide nanostructures by
[(butylamino)(pyridine)methyl]phenylphosphinic acid (PyPA). For this
purpose, 2-, 3-, and 4-isomers of PyPA and the nanostructures were
synthesized. The nanostructure were characterized by UV-visible spectroscopy
(UV–vis), scanning electron microscopy (SEM), Raman spectroscopy
(RS), and X-ray diffraction (XRD) analysis, which proved the formation
of spherical Cu2O nanoparticles (Cu2ONPs; 1500–600
nm) and leaf-like CuO nanostructures (CuONSs; 80–180/400–700
nm, width/length). PyPA isomers were deposited on the surface of NSs,
and adsorption was investigated by surface-enhanced Raman scattering
(SERS) and tip-enhanced Raman scattering (TERS). The changes of adsorption
on the surface of copper oxide NSs caused by the above-mentioned factors
were described and the enhancement factor on this substrate was calculated.
Collapse