1
|
Ramsperger AFRM, Wieland S, Wilde MV, Fröhlich T, Kress H, Laforsch C. Cellular internalization pathways of environmentally exposed microplastic particles: Phagocytosis or macropinocytosis? JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137647. [PMID: 39986097 DOI: 10.1016/j.jhazmat.2025.137647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Microplastic particles (MP) ubiquitously occur in all environmental compartments where they interact with biomolecules, forming an eco-corona on their surfaces. The eco-corona affects the surface properties of MP and consequently how they interact with cells. Proteins, an integral component within the eco-corona, may serve as a ligand driving the interaction of MP with membrane receptors. To date, it is not known, whether eco-coronae originating from different environmental media differ in their proteinaceous compositions and whether these particles interact differently with cells. We show that the protein composition of the eco-coronae formed in freshwater (FW) and salt water (SW) are distinct from each other. We did not observe different adhesion strengths between MP coated with different eco-coronae and cells. However, the internalization efficiency and the underlying internalization mechanisms significantly differed between FW- and SW eco-coronae. By inhibiting actin-driven and receptor-mediated internalization processes using Cytochalasin-D, Amiloride, and Amantadine, we show that FW microplastic particles predominantly become internalized via phagocytosis, while macropinocytosis is more important for SW microplastic particles. Overall, our findings show that the origin of eco-coronae coatings are important factors for the cellular internalization of microplastic particles. This highlights the relevance of eco-coronae for adverse effects of environmentally relevant microplastic particles on cells and organisms.
Collapse
Affiliation(s)
- Anja F R M Ramsperger
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany; Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Simon Wieland
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany; Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany; Department of Earth and Environmental Sciences, Paleontology & Geobiology, LMU München, Munich, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Fan X, Wang C, Kong L, Wang J, Tan Y, Yu Z, Xu X, Zhu L. Spatial heterogeneity of EPS-mediated microplastic aggregation in phycosphere shapes polymer-specific Trojan horse effects. WATER RESEARCH 2025; 281:123686. [PMID: 40300365 DOI: 10.1016/j.watres.2025.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
The pervasive contamination of aquatic ecosystems by microplastics represented a critical environmental challenge. While algal-bacterial symbiosis systems demonstrated potential for microplastic aggregation via extracellular polymeric substances (EPS), prior studies have focused on temporal dynamics rather than spatial heterogeneity in phycosphere. This study systematically investigated the adsorption mechanisms of Polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyethylene (PE) and polystyrene (PS) across stratified EPS fractions, tightly bound (TB-EPS), loosely bound (LB-EPS), and soluble (S-EPS), in phycosphere. Combining controlled aggregation assays with multimodal characterization, we revealed a hierarchical spatial framework governing EPS-microplastic interactions. Adsorption efficiency governed by polymer-specific interfacial energies and EPS organic composition. EPS at distinct hierarchical levels exhibited material-specific adsorption preferences for microplastics. PVC and PET demonstrated higher affinities for hydrocarbon components, while PE and PS were preferentially captured through interactions with polysaccharides and amide I groups, respectively. The adsorption and aggregation behaviors between EPS and microplastics in the phycosphere promoted eco-corona formation and induced the Trojan horse effect. However, the energy barrier of interaction forces and EPS spatial configurations jointly governed the hierarchical stabilization of polymer-specific microplastics. PVC and PET primarily colonized the outermost S-EPS layer, PS preferentially accumulated in the intermediate LB-EPS layer, and PE penetrated into the innermost TB-EPS layer. These findings addressed a key knowledge gap by delineating the ecological niche-specific distribution of EPS-microplastic binding, offering novel insights for optimizing bioremediation strategies and informing regulatory measures targeting particulate plastic pollution in hydrologic systems.
Collapse
Affiliation(s)
- Xuan Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chen Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Lingyu Kong
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jingyi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yixiao Tan
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Zhuodong Yu
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, PR China
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, PR China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, PR China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Mondellini S, Schwarzer M, Völkl M, Jasinski J, Jérôme V, Scheibel T, Laforsch C, Freitag R. Size dependent uptake and trophic transfer of polystyrene microplastics in unicellular freshwater eukaryotes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172470. [PMID: 38621530 DOI: 10.1016/j.scitotenv.2024.172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Microplastics (MP) have become a well-known and widely investigated environmental pollutant. Despite the huge amount of new studies investigating the potential threat posed by MP, the possible uptake and trophic transfer in lower trophic levels of freshwater ecosystems remains understudied. This study aims to investigate the internalization and potential trophic transfer of fluorescent polystyrene (PS) beads (0.5 μm, 3.6 × 108 particles/mL; 6 μm, 2.1 × 105 particles/mL) and fragments (<30 μm, 5 × 103 particles/mL) in three unicellular eukaryotes. This study focuses on the size-dependent uptake of MP by two freshwater Ciliophora, Tetrahymena pyriformis, Paramecium caudatum and one Amoebozoa, Amoeba proteus, serving also as predator for experiments on potential trophic transfer. Size-dependent uptake of MP in all three unicellular eukaryotes was shown. P. caudatum is able to take up MP fragments up to 27.7 μm, while T. pyriformis ingests particles up to 10 μm. In A. proteus, small MP (PS0.5μm and PS6μm) were taken up via pinocytosis and were detected in the cytoplasm for up to 14 days after exposure. Large PS-MP (PS<30μm) were detected in A. proteus only after predation on MP-fed Ciliophora. These results indicate that A. proteus ingests larger MP via predation on Ciliophora (PS<30μm), which would not be taken up otherwise. This study shows trophic transfer of MP at the base of the aquatic food web and serves as basis to study the impact of MP in freshwater ecosystems.
Collapse
Affiliation(s)
- Simona Mondellini
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Michael Schwarzer
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Julia Jasinski
- Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany; Bayerisches Polymerinstitut (BPI), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Materialzentrum (BayMAT), University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany.
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95447 Bayreuth, Germany; Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
4
|
Angelescu DG. Molecular modeling of the carbohydrate corona formation on a polyvinyl chloride nanoparticle and its impact on the adhesion to lipid bilayers. J Chem Phys 2024; 160:144901. [PMID: 38591687 DOI: 10.1063/5.0198254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The pervasive presence of nanoplastics (NPs) in the environment has gained increasing attention due to their accumulation in living organisms. These emerging contaminants inevitably interact with extracellular polymeric substances along respiratory or gastrointestinal tracts, and diverse organic coating on the surface of NPs, known as bio- or eco-corona, is formed. Although its impact on altering the NP properties and potential cell internalization has been extensively examined, studies on its role in NP partitioning in the cell membrane are elusive yet. In this work, molecular dynamics is used to investigate the formation of chitosan (CT) corona centered on a polyvinyl chloride (PVC) nanoparticle and the uptake of the resulting complex onto lipid membranes. Coarse-grained models compatible with the newly developed Martini 3.0 force field are implemented for the two polymers employing the atomistic properties as targets in the parameterization. The reliability of the coarse-grained polymer models is demonstrated by reproducing the structural properties of the PVC melt and of solvated CT strands, as well as by determining the conformation adopted by the latter at the NP surface. Results show that the spontaneous binding of CT chains of high and intermediate protonation degrees led to the formation of soft and hard corona that modulates the interaction of PVC core with model membranes. The structural changes of the corona adsorbed at the lipid-water interface enable a subsequent transfer of the NP to the center of the saturated lipid membranes and a complete or partial transition to a snorkel conformation depending on the hydrophilic/hydrophobic balance in the CT-PVC complex. Overall, the computational investigation of the coarse-grained model system provides implications for understanding how the eco-corona development influences the uptake and implicit toxicology of NPs.
Collapse
Affiliation(s)
- Daniel G Angelescu
- Romanian Academy, "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
5
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
6
|
Takács D, Szabó T, Jamnik A, Tomšič M, Szilágyi I. Colloidal Interactions of Microplastic Particles with Anionic Clays in Electrolyte Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12835-12844. [PMID: 37647144 PMCID: PMC10501195 DOI: 10.1021/acs.langmuir.3c01700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Homoaggregation of polystyrene microplastics (MPs) and heteroaggregation of MPs with anionic clay minerals, namely, layered double hydroxide (LDH), in different salt (NaCl, CaCl2, and Na2SO4) solutions were systematically investigated using light scattering techniques. The salt type and ionic strength had significant effects on the stability of both MPs and LDH particles individually and the results could be explained by DLVO theory and the Schulze-Hardy rule. However, once stable colloidal dispersions of the individual particles were mixed, heteroaggregation occurred between the oppositely charged MPs and LDH, which was also confirmed by transmission electron microscopy and X-ray scattering. Adsorption of the LDH particles resulted in neutralization and reversal of MPs surface charge at appropriate LDH doses. Once LDH adsorption neutralized the negative charges of the MP spheres, rapid aggregation was observed in the dispersions, whereas stable samples formed at high and low LDH concentrations. The governing interparticle interactions included repulsive electrical double-layer forces, as well as van der Waals and patch-charge attractions, the strength of which depended on the mass ratio of the interacting particles and the composition of the aqueous solvent. Our results shed light on the colloidal behavior of MPs in a complex aquatic environment and, in the long term, are also useful for developing LDH-based approaches for water remediation to remove contamination with MP particles.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
| | - Tamás Szabó
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
| | - Andrej Jamnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Bela ter 1, H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Alsharif N, Viczián D, Szcześ A, Szilagyi I. Formulation of Antioxidant Composites by Controlled Heteroaggregation of Cerium Oxide and Manganese Oxide Nanozymes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17201-17212. [PMID: 37674655 PMCID: PMC10478773 DOI: 10.1021/acs.jpcc.3c03964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Indexed: 09/08/2023]
Abstract
Antioxidant composites based on nanozymes [manganese oxide microflakes (MnO2 MFs) and cerium oxide nanoparticles (CeO2 NPs)] were formulated by controlled heteroaggregation. The interparticle attraction via electrostatic forces was systematically tuned with surface functionalization by the poly(diallyldimethyl chloride) (PDADMAC) polyelectrolyte. The PDADMAC-coated MnO2 MFs (PMn) were heteroaggregated with oppositely charged CeO2 NPs to generate the Ce-PMn composite, while the PDADMAC-functionalized CeO2 NPs (PCe) were immobilized onto bare MnO2 MFs, resulting in the Mn-PCe composite. Both the adsorption of PDADMAC and the self-assembly of oppositely charged particles resulted in charge neutralization and charge reversal at appropriately high doses. The interparticle force regimes, the aggregation states, and the physicochemical properties of the relevant dispersions were also highly dependent on the dose of PDADMAC, as well as that of PDADMAC-functionalized metal oxides (PMO) enabling the fine-tuning and control of colloidal stability. The individual enzyme-like activity of either metal oxide was not compromised by PDADMAC adsorption and/or heteroaggregation, leading to the formation of broad-spectrum antioxidant composites exhibiting multiple enzyme-like activities such as superoxide dismutase, oxidase, and peroxidase-type functions. The low cost and ease of preparation, as well as controllable colloidal properties render such composites potential enzyme mimicking agents in various industrial fields, where processable antioxidant systems are needed.
Collapse
Affiliation(s)
- Nizar
B. Alsharif
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged, H-6720 Szeged, Hungary
| | - Dániel Viczián
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged, H-6720 Szeged, Hungary
| | - Aleksandra Szcześ
- Department
of Interfacial Phenomena, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University, PL-20031 Lublin, Poland
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
8
|
Rius-Ayra O, Carmona-Ruiz M, Llorca-Isern N. Superhydrophobic cotton fabrics for effective removal of high-density polyethylene and polypropylene microplastics: Insights from surface and colloidal analysis. J Colloid Interface Sci 2023; 646:763-774. [PMID: 37229994 DOI: 10.1016/j.jcis.2023.05.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
HYPOTHESIS The use of superhydrophobic materials to remove particulate pollutants such as microplastics is still in its infancy. In a previous study, we investigated the effectiveness of three different types of superhydrophobic materials - coatings, powdered materials, and meshes - for removing microplastics. In this study, we will explain the removal process by considering microplastics as colloids and taking into account their wetting properties as well as those of a superhydrophobic surface. The process will be explained through the interactions of electrostatic forces, van der Waals forces, and the DLVO theory. EXPERIMENTS In order to replicate and verify the previous experimental findings on the removal of microplastics using superhydrophobic surfaces, we have modified non-woven cotton fabrics with polydimethylsiloxane. We then proceeded to remove high-density polyethylene and polypropylene microplastics from water by introducing oil at the microplastics-water interface, and we determined the removal efficiency of the modified cotton fabrics. FINDINGS After achieving a superhydrophobic non-woven cotton fabric (159 ± 1°), we confirmed its effectiveness in removing high-density polyethylene and polypropylene microplastics from water with a removal efficiency of 99%. Our findings suggest that the binding energy of microplastics increases and the Hamaker constant becomes positive when they are present in oil instead of water, leading to their aggregation. As a result, electrostatic interactions become negligible in the organic phase, and van der Waals interactions become more important. The use of the DLVO theory allowed us to confirm that solid pollutants can be easily removed from the oil using superhydrophobic materials.
Collapse
Affiliation(s)
- O Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain.
| | - M Carmona-Ruiz
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| | - N Llorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Schvartz M, Saudrais F, Devineau S, Chédin S, Jamme F, Leroy J, Rakotozandriny K, Taché O, Brotons G, Pin S, Boulard Y, Renault JP. Role of the Protein Corona in the Colloidal Behavior of Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4291-4303. [PMID: 36930733 DOI: 10.1021/acs.langmuir.2c03237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microparticles of polyethylene and polypropylene are largely found in aquatic environments because they are the most produced and persistent plastic materials. Once in biological media, they are covered by a layer of molecules, the so-called corona, mostly composed of proteins. A yeast protein extract from Saccharomyces cerevisiae was used as a protein system to observe interactions in complex biological media. Proteins, acting as surfactants and providing hydrophilic surfaces, allow the dispersion of highly hydrophobic particles in water and stabilize them. After 24 h, the microplastic quantity was up to 1 × 1011 particles per liter, whereas without protein, no particles remained in solution. Label-free imaging of the protein corona by synchrotron radiation deep UV fluorescence microscopy (SR-DUV) was performed. In situ images of the protein corona were obtained, and the adsorbed protein quantity, the coverage rate, and the corona heterogeneity were determined. The stability kinetics of the microplastic suspensions were measured by light transmission using a Turbiscan analyzer. Together, the microscopic and kinetics results demonstrate that the protein corona can very efficiently stabilize microplastics in solution provided that the protein corona quality is sufficient. Microplastic stability depends on different parameters such as the particle's intrinsic properties (size, density, hydrophobicity) and the protein corona formation that changes the particle wettability, electrostatic charge, and steric hindrance. By controlling these parameters with proteins, it becomes possible to keep microplastics in and out of solution, paving the way for applications in the field of microplastic pollution control and remediation.
Collapse
Affiliation(s)
- Marion Schvartz
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Florent Saudrais
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Stéphane Chédin
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, Saint-Aubin, 91190 Gif sur Yvette Cedex, France
| | - Jocelyne Leroy
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Karol Rakotozandriny
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Guillaume Brotons
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif Sur Yvette, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
10
|
van den Berg AET, Plantinga M, Vethaak D, Adriaans KJ, Bol-Schoenmakers M, Legler J, Smit JJ, Pieters RHH. Environmentally weathered polystyrene particles induce phenotypical and functional maturation of human monocyte-derived dendritic cells. J Immunotoxicol 2022; 19:125-133. [PMID: 36422989 DOI: 10.1080/1547691x.2022.2143968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP in vitro by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 µm), at different concentrations ranging from 1 to 100 µg/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 µm PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These in vitro data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization.
Collapse
Affiliation(s)
| | - Maud Plantinga
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick Vethaak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Environment and Health, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kas J Adriaans
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joost J Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond H H Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Jasinski J, Wilde MV, Voelkl M, Jérôme V, Fröhlich T, Freitag R, Scheibel T. Tailor-Made Protein Corona Formation on Polystyrene Microparticles and its Effect on Epithelial Cell Uptake. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47277-47287. [PMID: 36194482 DOI: 10.1021/acsami.2c13987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastic particles are pollutants in the environment with a potential impact on ecology and human health. As soon as microplastic particles get in contact with complex (biological) environments, they will be covered by an eco- and/or protein corona. In this contribution, protein corona formation was conducted under defined laboratory conditions on polystyrene (PS) microparticles to investigate the influence on surface properties, protein corona evolution, particle-cell interactions, and uptake in two murine epithelial cells. To direct protein corona formation, PS particles were preincubated with five model proteins, namely, bovine serum albumin (BSA), myoglobin, β-lactoglobulin, lysozyme, and fibrinogen. Subsequently, the single-protein-coated particles were incubated in a cell culture medium containing a cocktail of serum proteins to analyze changes in the protein corona profile as well as in the binding kinetics of the model proteins. Therein, we could show that the precoating step has a critical impact on the final composition of the protein corona. Yet, since proteins building the primary corona were still detectable after additional incubations in a protein-containing medium, backtracking of the particle's history is possible. Interestingly, whereas the precoating history significantly disturbs particle-cell interactions (PCIs), the cellular response (i.e., metabolic activity, MTT assay) stays unaffected. Of note, lysozyme precoating revealed one of the highest rates in PCI for both epithelial cell lines. Taken together, we could show that particle history has a significant impact on protein corona formation and subsequently on the interaction of particles with murine intestinal epithelial-like cells. However, as this study was limited to one cell type, further work is needed to assess if these observations can be generalized to other cell types.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, D-81377 Munich, Germany
| | - Matthias Voelkl
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, D-81377 Munich, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), University of Bayreuth, D-95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|