1
|
Richert M, Dudek M, Sala D. Surface Quality as a Factor Affecting the Functionality of Products Manufactured with Metal and 3D Printing Technologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5371. [PMID: 39517644 PMCID: PMC11547365 DOI: 10.3390/ma17215371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Surface engineering is one of the most extensive industries. Virtually all areas of the economy benefit from the achievements of surface engineering. Surface quality affects the quality of finished products as well as the quality of manufactured parts. It affects both functional qualities and esthetics. Surface quality affects the image and reputation of a brand. This is particularly true for cars and household appliances. Surface modification of products is also aimed at improving their functional and protective properties. This applies to surfaces for producing hydrophobic surfaces, anti-wear protection of friction pairs, corrosion protection, and others. Metal technologies and 3D printing benefit from surface technologies that improve their functionality and facilitate the operation of products. Surface engineering offers a range of different coating and layering methods from varnishing and painting to sophisticated nanometric coatings. This paper presents an overview of selected surface engineering issues pertaining to metal products, with a particular focus on surface modification of products manufactured by 3D printing technology. It evaluates the impact of the surface quality of products on their functional and performance qualities.
Collapse
Affiliation(s)
- Maria Richert
- Management Faculty, AGH University, Gramatyka 10 str., 30-067 Kraków, Poland; (M.D.); (D.S.)
| | | | | |
Collapse
|
2
|
Hauer L, Naga A, Badr RGM, Pham JT, Wong WSY, Vollmer D. Wetting on silicone surfaces. SOFT MATTER 2024; 20:5273-5295. [PMID: 38952198 DOI: 10.1039/d4sm00346b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.
Collapse
Affiliation(s)
- Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Abhinav Naga
- Department of Physics, Durham University, DH1 3LE, UK
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55099 Mainz, Germany
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, 45221 OH, USA
| | - William S Y Wong
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Doris Vollmer
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Zhang S, Zhao L, Yu M, Guo J, Liu C, Zhu C, Zhao M, Huang Y, Zheng Y. Measurement Methods for Droplet Adhesion Characteristics and Micrometer-Scale Quantification of Contact Angle on Superhydrophobic Surfaces: Challenges and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9873-9891. [PMID: 38695884 DOI: 10.1021/acs.langmuir.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Inspired by nature, superhydrophobic surfaces have been widely studied. Usually the wettability of a superhydrophobic surface is quantified by the macroscopic contact angle. However, this method has various limitations, especially for precision micro devices with superhydrophobic surfaces, such as biomimetic artificial compound eyes and biomimetic water strider robots. These precision micro devices with superhydrophobic surfaces proposed a higher demand for the quantification of contact angles, requiring contact angle quantification technology to have micrometer-scale measurement capabilities. In this review, it is proposed to achieve micrometer-scale quantification of superhydrophobic surface contact angles through droplet adhesion characteristics (adhesion force and contact radius). Existing contact angle quantification techniques and droplet characteristics' measurement methods were described in detail. The advancement of micrometer-scale quantification technology for the contact angle of superhydrophobic surfaces will enhance our understanding of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lingzhe Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meike Yu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chunyuan Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yinguo Huang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Liu IC, Hu X, Fei B, Lee C, Fan S, Xin JH, Noor N. Fluorine-free nanoparticle coatings on cotton fabric: comparing the UV-protective and hydrophobic capabilities of silica vs. silica-ZnO nanostructures. RSC Adv 2024; 14:4301-4314. [PMID: 38304558 PMCID: PMC10828638 DOI: 10.1039/d3ra08835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Robust, hydrophobic woven cotton fabrics were obtained through the sol-gel dip coating of two different nanoparticle (NP) architectures; silica and silica-ZnO. Water repellency values as high as 148° and relatively low tilt angles for fibrous fabrics (12°) were observed, without the need for fluorinated components. In all cases, this enhanced functionality was achieved with the broad retention of water vapor permeability characteristics, i.e., less than 10% decrease. NP formation routes indicated direct bonding interactions in both the silica and silica-ZnO structures. The physico-chemical effects of NP-compatibilizer (i.e., polydimethoxysilane (PDMS) and n-octyltriethoxysilane (OTES) at different ratios) coatings on cotton fibres indicate that compatibilizer-NP interactions are predominantly physical. Whenever photoactive ZnO-containing additives were used, there was a minor decrease in hydrophobic character, but order of magnitude increases in UV-protective capability (i.e., UPF > 384); properties which were absent in non-ZnO-containing samples. Such water repellency and UPF capabilities were stable to both laundering and UV-exposure, resisting the commonly encountered UV-induced wettability transitions associated with photoactive ZnO. These results suggest that ZnO-containing silica NP coatings on cotton can confer both excellent and persistent surface hydrophobicity as well as UV-protective capability, with potential uses in wearables and functional textiles applications.
Collapse
Affiliation(s)
- Irene ChaoYun Liu
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Xin Hu
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Bin Fei
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Chenghao Lee
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Suju Fan
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - John H Xin
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Nuruzzaman Noor
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| |
Collapse
|
5
|
McKee JA, Olsen EA, Wills Kpeli G, Brooks MR, Beitollahpoor M, Pesika NS, Burow ME, Mondrinos MJ. Engineering dense tumor constructs via cellular contraction of extracellular matrix hydrogels. Biotechnol Bioeng 2024; 121:380-394. [PMID: 37822194 DOI: 10.1002/bit.28561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Physical characteristics of solid tumors such as dense internal microarchitectures and pathological stiffness influence cancer progression and treatment. While it is routine to engineer culture substrates and scaffolds with elastic moduli that approximate tumors, these models often fail to capture characteristic internal microarchitectures such as densely compacted concentric ECM fibers at the stromal interface. Contractile mesenchymal cells can solve this engineering challenge by deforming, contracting, and compacting extracellular matrix (ECM) hydrogels to decrease tissue volume and increase tissue density. Here we demonstrate that allowing human fibroblasts of varying origins to freely contract collagen type I-containing hydrogels co-seeded with carcinoma cell spheroids produces a tissue engineered construct with structural features that mimic dense solid tumors in vivo. Morphometry and mechanical testing were conducted in tandem with biochemical analysis of proliferation and viability to confirm that dense carcinoma constructs engineered using this approach capture relevant physical characteristics of solid carcinomas in a tractable format that preserves viability and is amenable to extended culture. The reported method is adaptable to the use of multiple mesenchymal cell types and the inclusion of fibrin in the ECM combined with seeding of endothelial cells to produce prevascularized constructs. The physical dense carcinoma constructs engineered using this approach may provide more clinically relevant venues for studying cancer pathophysiology and the challenges associated with the delivery of macromolecular drugs and cellular immunotherapies to solid tumors.
Collapse
Affiliation(s)
- Jae A McKee
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
- Bioinnovation Program, Tulane University, New Orleans, Louisiana, USA
| | - Elisabet A Olsen
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
- Bioinnovation Program, Tulane University, New Orleans, Louisiana, USA
| | - Gideon Wills Kpeli
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Moriah R Brooks
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | - Noshir S Pesika
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Bioinnovation Program, Tulane University, New Orleans, Louisiana, USA
- Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Mark J Mondrinos
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
- Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Solomon SE, Doubleday P, Landry J, John VT, Pesika NS. Lubrication mechanisms of dispersed carbon microspheres in boundary through hydrodynamic lubrication regimes. J Colloid Interface Sci 2023; 650:1801-1810. [PMID: 37506420 DOI: 10.1016/j.jcis.2023.07.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
HYPOTHESIS Carbon microspheres have been shown to reduce friction and surface wear at relatively low speeds and high applied loads (i.e., within the boundary lubrication regime). We hypothesize that in dilute colloidal lubricating systems there is an interplay between the size of the carbon microspheres and the lubrication gap size, which determines the dominant lubricating mechanism of the system. EXPERIMENTS A 60 wt% aqueous glycerol solution was used as the base lubricant and compared to various carbon particle-based lubricant formulations ranging in particle concentrations from 0.05 to 0.30 vol%. The tribological properties of the various lubricant formulations were tested on a pin-on-disk tribometer. A simplified Stribeck plot was produced to understand the changing mechanism of lubrication over a wide range of conditions. FINDINGS The Stribeck curves show that the carbon microspheres assist lubrication by a rolling mechanism primarily in the boundary lubrication regime. A 0.20 vol% carbon-based lubricant formulation showed the best friction reduction compared to the base lubricant. Increasing speed increases the lubricating gap between the friction pair beyond the size of the particles, thereby nullifying the rolling mechanism of the particles. We introduce a modified specific film thickness parameter to determine the lubrication regime in a particle-lubricant system.
Collapse
Affiliation(s)
- Samuel E Solomon
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Pierce Doubleday
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Jared Landry
- New Product Development, Intralox LLC, 301 Plantation Rd., New Orleans, LA 70123, USA.
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | - Noshir S Pesika
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| |
Collapse
|
7
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
8
|
Beitollahpoor M, Farzam M, Pesika NS. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces. J Colloid Interface Sci 2023; 648:161-168. [PMID: 37301141 DOI: 10.1016/j.jcis.2023.05.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
HYPOTHESIS Contact angle and sliding angle measurements are widely used to characterize superhydrophobic surfaces because of the simplicity and accessibility of the technique. We hypothesize that dynamic friction measurements, with increasing pre-loads, between a water drop and a superhydrophobic surface is more accurate because this technique is less influenced by local surface inhomogeneities and temporal surface changes. EXPERIMENTS A water drop, held by a ring probe which is connected to a dual-axis force sensor, is sheared against a superhydrophobic surface while maintaining a constant preload. From this force-based technique, static and kinetic friction forces measurements are used to characterize the wetting properties of the superhydrophobic surfaces. Furthermore, by applying increased pre-loads to the water drop while shearing, the critical load at which the drop transitions from the Cassie-Baxter to Wenzel state is also measured. FINDINGS The force-based technique predicts sliding angles with reduced standard deviations (between 56 and 64%) compared to conventional optical-based measurements. Kinetic friction force measurements show a higher accuracy (between 35 and 80%) compared to static friction force measurements in characterizing the wetting properties of superhydrophobic surfaces. The critical loads for the Cassie-Baxter to Wenzel state transition allows for stability characterization between seemingly similar superhydrophobic surfaces.
Collapse
Affiliation(s)
| | - Melika Farzam
- Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118, USA.
| | - Noshir S Pesika
- Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
9
|
Aktas C, Polat O, Beitollahpoor M, Farzam M, Pesika NS, Sahiner N. Force-Based Characterization of the Wetting Properties of LDPE Surfaces Treated with CF 4 and H 2 Plasmas. Polymers (Basel) 2023; 15:polym15092132. [PMID: 37177278 PMCID: PMC10181085 DOI: 10.3390/polym15092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Low-density polyethylene (LDPE) films are widely used in packaging, insulation and many other commodity applications due to their excellent mechanical and chemical properties. However, the water-wetting and water-repellant properties of these films are insufficient for certain applications. In this study, bare LDPE and textured LDPE (T-LDPE) films were subjected to low-pressure plasmas, such as carbon tetrafluoride (CF4) and hydrogen (H2), to see the effect of plasma treatment on the wetting properties of LDPE films. In addition, the surface of the LDPE film was textured to improve the hydrophobicity through the lotus effect. The LDPE and T-LDPE films had contact angle (θ) values of 98.6° ± 0.6 and 143.6° ± 1.0, respectively. After CF4 plasma treatments, the θ values of the surfaces increased for both surfaces, albeit within the standard deviation for the T-LDPE film. On the other hand, the contact angle values after H2 plasma treatment decreased for both surfaces. The surface energy measurements supported the changes in the contact angle values: exposure to H2 plasma decreased the contact angle, while exposure to CF4 plasma increased the contact angle. Kinetic friction force measurements of water drops on LDPE and T-LDPE films showed a decrease in friction after the CF4 plasma treatment, consistent with the contact angle and surface energy measurements. Notably, the kinetic friction force measurements proved to be more sensitive compared to the contact angle measurements in differentiating the wetting properties of the T-LDPE versus 3× CF4-plasma-treated LDPE films. Based on Atomic Force Microscopy (AFM) images of the flat LDPE samples, the 3× CF4 plasma treatment did not significantly change the surface morphology or roughness. However, in the case of the T-LDPE samples, Scanning Electron Microscopy (SEM) images showed noticeable morphological changes, which were more significant at sharp edges of the surface structures.
Collapse
Affiliation(s)
- Cihan Aktas
- Department of Chemical, Biomolecular and Materials Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Osman Polat
- Department of Chemical, Biomolecular and Materials Engineering, University of South Florida, Tampa, FL 33620, USA
| | | | - Melika Farzam
- Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118, USA
| | - Noshir S Pesika
- Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118, USA
| | - Nurettin Sahiner
- Department of Chemical, Biomolecular and Materials Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC21, Tampa, FL 33612, USA
- Department of Chemistry, Faculty of Science and Arts & Nanoscience, Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| |
Collapse
|
10
|
Hinduja C, Laroche A, Shumaly S, Wang Y, Vollmer D, Butt HJ, Berger R. Scanning Drop Friction Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14635-14643. [PMID: 36399702 PMCID: PMC9730904 DOI: 10.1021/acs.langmuir.2c02046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wetting imperfections are omnipresent on surfaces. They cause contact angle hysteresis and determine the wetting dynamics. Still, existing techniques (e.g., contact angle goniometry) are not sufficient to localize inhomogeneities and image wetting variations. We overcome these limitations through scanning drop friction force microscopy (sDoFFI). In sDoFFI, a 15 μL drop of Milli-Q water is raster-scanned over a surface. The friction force (lateral adhesion force) acting on the moving contact line is plotted against the drop position. Using sDoFFI, we obtained 2D wetting maps of the samples having sizes in the order of several square centimeters. We mapped areas with distinct wetting properties such as those present on a natural surface (e.g., a rose petal), a technically relevant superhydrophobic surface (e.g., Glaco paint), and an in-house prepared model of inhomogeneous surfaces featuring defined areas with low and high contact angle hysteresis. sDoFFI detects features that are smaller than 0.5 mm in size. Furthermore, we quantified the sliding behavior of drops across the boundary separating areas with different contact angles on the model sample. The sliding of a drop across this transition line follows a characteristic stick-slip motion. We use the variation in force signals, advancing and receding contact line velocities, and advancing and receding contact angles to identify zones of stick and slip. When scanning the drop from low to high contact angle hysteresis, the drop undergoes a stick-slip-stick-slip motion at the interline. Sliding from high to low contact angle hysteresis is characterized by the slip-stick-slip motion. The sDoFFI is a new tool for 2D characterization of wetting properties, which is applicable to laboratory-based samples but also characterizes biological and commercial surfaces.
Collapse
Affiliation(s)
- Chirag Hinduja
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Alexandre Laroche
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
- University
of Zurich, Winterthurerstrasse
190, Zurich 8057, Switzerland
| | - Sajjad Shumaly
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Yujiao Wang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Doris Vollmer
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | | | - Rüdiger Berger
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
11
|
Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf. Biomimetics (Basel) 2022; 7:biomimetics7040196. [PMID: 36412724 PMCID: PMC9680393 DOI: 10.3390/biomimetics7040196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Nature has proven to be a valuable resource in inspiring the development of novel technologies. The field of biomimetics emerged centuries ago as scientists sought to understand the fundamental science behind the extraordinary properties of organisms in nature and applied the new science to mimic a desired property using various materials. Through evolution, living organisms have developed specialized surface coatings and chemistries with extraordinary properties such as the superhydrophobicity, which has been exploited to maintain structural integrity and for survival in harsh environments. The Lotus leaf is one of many examples which has inspired the fabrication of superhydrophobic surfaces. In this review, the fundamental science, supported by rigorous derivations from a thermodynamic perspective, is presented to explain the origin of superhydrophobicity. Based on theory, the interplay between surface morphology and chemistry is shown to influence surface wetting properties of materials. Various fabrication techniques to create superhydrophobic surfaces are also presented along with the corresponding advantages and/or disadvantages. Recent advances in the characterization techniques used to quantify the superhydrophobicity of surfaces is presented with respect to accuracy and sensitivity of the measurements. Challenges associated with the fabrication and characterization of superhydrophobic surfaces are also discussed.
Collapse
|
12
|
Nagy N. Capillary Bridges on Hydrophobic Surfaces: Analytical Contact Angle Determination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6201-6208. [PMID: 35523001 PMCID: PMC9118539 DOI: 10.1021/acs.langmuir.2c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The capillary bridge probe method was introduced previously as a high-accuracy contact angle determination method relying on capillary bridges on hydrophilic and superhydrophilic surfaces [Nagy, N. Langmuir 2019, 35 (15), 5202-5212]. In this work, the behavior of r-ϑ type liquid bridges was studied and the contact angles were determined on hydrophobic surfaces. The equilibrium shape of these liquid bridges often does not contain the neck or haunch region. The unknown neck/haunch radius prevents analytical evaluation of the capillary bridge shape. In this work, the possible incomplete liquid bridge shapes were classified and a novel procedure was developed for the Delaunay's analytical solution-based evaluation of these states. The parameter space of the capillary bridges was visualized and described without using dimensionless variables. As a demonstration, Cyclo Olefin Polymer and PTFE surfaces were investigated, with advancing and receding contact angles determined and compared to the results of sessile drop measurements.
Collapse
|
13
|
Nongnual T, Kaewpirom S, Damnong N, Srimongkol S, Benjalersyarnon T. A Simple and Precise Estimation of Water Sliding Angle by Monitoring Image Brightness: A Case Study of the Fluid Repellency of Commercial Face Masks. ACS OMEGA 2022; 7:13178-13188. [PMID: 35474827 PMCID: PMC9026028 DOI: 10.1021/acsomega.2c00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 05/10/2023]
Abstract
Fluid repellency of a hydrophobic surface has been typically demonstrated in terms of water sliding angle. A drop shape analysis method with a written computer algorithm monitoring the image brightness was proposed to precisely estimate the sliding angle. A hydrophobic surface coated with silanized silicon dioxide or polytetrafluoroethylene was selected as a known sample for the method validation. Average pixel brightness in an 8-bit grayscale unit rapidly increased after a water drop rolled off the surface, thus removing its black pixels. The resulting sliding angle was then determined as the tilt angle of the sample stage related to the sliding time at the brightness leap. The optimized angular speed of the rotor at 0.1 degrees per frame was chosen to avoid an overestimation of the sliding angle due to the deceleration. The proposed method yielded accurate sliding angles with an error of less than 0.2 degrees. It was then applied to study the fluid resistance of commercial face masks including disposable surgical masks and reusable fabric masks. It was found that the outermost layer of the single-use surgical masks can moderately repel a water drop with a sliding angle of 49.4 degrees. Meanwhile, the pre-coated fabric masks retained high protection efficiency at a sliding angle of less than 45 degrees after about 20 wash cycles. In addition, a raw muslin fabric coated with a commercial water-repellent spray could be a promising and affordable alternative to the surgical mask during the pandemic with high water repellency even after a few washes. The results suggested that, besides the hydrophobicity indicated by the typical contact angle, the precise sliding angle estimated by the proposed alternative method could additionally provide crucial information that might lead to a detailed discussion of the fluid repellency of rough materials.
Collapse
Affiliation(s)
- Teeranan Nongnual
- Department
of Chemistry, Faculty of Science, Burapha
University, 169 Longhad Bangsaen Rd., Saensuk, Chonburi, 20131 Thailand
| | - Supranee Kaewpirom
- Department
of Chemistry, Faculty of Science, Burapha
University, 169 Longhad Bangsaen Rd., Saensuk, Chonburi, 20131 Thailand
| | - Nontakorn Damnong
- Department
of Adult Nursing, Faculty of Nursing, Burapha
University, 169 Longhad Bangsaen Rd., Saensuk, Chonburi 20131 Thailand
| | - Sineenart Srimongkol
- Department
of Mathematics, Faculty of Science, Burapha
University, 169 Longhad
Bangsaen Rd., Saensuk, Chonburi, 20131 Thailand
| | - Takat Benjalersyarnon
- Department
of Mechanical Engineering, Faculty of Engineering, Rajamangala University of Technology Rattanakosin, 96 Moo 3, Phutthamonthon Sai 5 Rd.,
Salaya, Phutthamonthon, Nakhon Pathom 73170 Thailand
| |
Collapse
|