1
|
Ota E, Takeda D, Oonuma K, Kato M, Matoba H, Yoritate M, Sodeoka M, Hirai G. Synthesis and biological activity of ganglioside GM3 analogues with a (S)-CHF-Sialoside linkage and an alkyne tag. Glycoconj J 2023; 40:333-341. [PMID: 36939991 DOI: 10.1007/s10719-023-10111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
The alkyne tag, consisting of only two carbons, is widely used as a bioorthogonal functional group due to its compactness and nonpolar structure, and various probes consisting of lipids bearing an alkyne tag have been developed. Here, we designed and synthesized analogues of ganglioside GM3 bearing an alkyne tag in the fatty acid moiety and evaluated the effect of the alkyne tag on the biological activity. To eliminate the influence of other factors such as degradation of the glycan chain when evaluating biological activity in a cellular environment, we introduced the tag into sialidase-resistant (S)-CHF-linked GM3 analogues developed by our group. The designed analogues were efficiently synthesized by tuning the protecting group of the glucosylsphingosine acceptor. The growth-promoting effect of these analogues on Had-1 cells was dramatically altered depending upon the position of the alkyne tag.
Collapse
Affiliation(s)
- Eisuke Ota
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daiki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kana Oonuma
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Marie Kato
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Gater DL, Hughes K, Stojanoff V, Isakovic AF. Phase Heterogeneity in Cholesterol-Containing Ternary Phospholipid Lamellar Phases. ACS OMEGA 2023; 8:6225-6233. [PMID: 36844553 PMCID: PMC9947962 DOI: 10.1021/acsomega.2c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Pseudo-ternary mixtures of lamellar phase phospholipids (DPPC and brain sphingomyelin with cholesterol) were studied below T m while comparing the influence of cholesterol content, temperature, and the presence of small quantities of vitamin D binding protein (DBP) or vitamin D receptor (VDR). The measurements, conducted by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR), cover a range of cholesterol concentrations (20% mol. wt to 40% mol. wt.) and physiologically relevant temperature range (294-314 K). In addition to rich intraphase behavior, data and modeling are used to approximate the lipids' headgroup location variations under the abovementioned experimental conditions.
Collapse
Affiliation(s)
| | - Keontré
I. Hughes
- Colgate
University, Hamilton, New York 13346-1338, United States
- Michigan
State University, East Lansing, Michigan 48824-1312, United States
| | - Vivian Stojanoff
- Brookhaven
National Laboratory, Upton, New York 11973-5000, United States
| | | |
Collapse
|
3
|
Umegawa Y, Shimonishi T, Tsuchikawa H, Murata M. LnDOTA-d 8 , a versatile chemical-shift thermometer for 2 H solid-state NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:1005-1013. [PMID: 35938541 DOI: 10.1002/mrc.5303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
2 H solid-state nuclear magnetic resonance (NMR) is a method for examining the mobility and orientation of molecules in the field of biophysics. In studies on lipid bilayer membranes, 2 H NMR is often adopted to detect a phase transition from the gel to the liquid-crystal phase, which is observed as a change in spectral shape, and to evaluate the ordering of lipid alkyl chains using quadrupole coupling values. Because the mobility of membrane lipids is highly temperature dependent, precise temperature control is a prerequisite for evaluating the physical properties of membranes. Generally, NMR instruments monitor the temperature of the variable temperature (VT) gas. The temperature inside the sample tube and the VT gas match only when the heat generated by the radio frequency (rf) pulse emitted from the coil or magic angle spinning is significantly lower than the cooling capacity of the VT gas. In other words, the sample temperature inside the tube depends on the measurement method. Therefore, in this study, we took advantage of temperature-dependent changes in the chemical shift of a paramagnetic metal-ligand complex. We designed and synthesized a deuterated ligand complex and evaluated its temperature dependence as a thermometer for 2 H solid-state NMR spectroscopy. We chose Tb, Dy, Ho, and Er as the paramagnetic central metals. We then measured the 2 H NMR spectrum of each metal complex and confirmed the 2 H chemical shift to be temperature dependent. Furthermore, with the use of the thermometer molecule with Er, we succeeded in accurately evaluating the segmental melting of an alkyl chain in lipid bilayers with 0.1°C accuracy.
Collapse
Affiliation(s)
- Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- JST ERATO, Lipid Active Structure Project and Project Research Center for Fundamental Science, Osaka University, Osaka, Japan
| | - Takeshi Shimonishi
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- JST ERATO, Lipid Active Structure Project and Project Research Center for Fundamental Science, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev 2022; 14:655-678. [PMID: 35791389 DOI: 10.1007/s12551-022-00967-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.
Collapse
Affiliation(s)
- Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Masanao Kinoshita
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215 USA
| |
Collapse
|