1
|
Belotti M, Hurtado C, Kelly S, MacGregor M, Darwish N, Ciampi S. Toward the Electrostatic Catalysis of Nucleophilic Substitutions: A Surface Chemistry Study of the Menshutkin Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26633-26639. [PMID: 39630487 DOI: 10.1021/acs.langmuir.4c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The catalysis of nonredox reactions by external electric fields is one of the most rapidly expanding areas of chemistry. The Menshutkin reaction, a classic example of bimolecular nucleophilic substitution (SN2), involves the conversion of a tertiary amine to a quaternary ammonium salt by coupling it with an alkyl halide. The reaction barrier of the Menshutkin reaction is theoretically predicted to be highly sensitive to the magnitude and direction of an external electric field experienced by the transition state. In this study, we investigate how near-surface electric fields can drive this prototypical nucleophilic substitution by examining the coupling of a diffusive redox-tagged tertiary amine with an electrode-tethered alkyl bromide under a variable external bias. Our findings reveal a competition between electrostatically assisted reactions, solvent effects, and electrochemically triggered side reactions involving radical intermediates. We estimate that only about 5% of the coupling events are attributable to the external field, while the majority of the reaction products originate from electrochemically generated radical intermediates.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Sophia Kelly
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
2
|
Venrooij KR, de Bondt L, Bonger KM. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Top Curr Chem (Cham) 2024; 382:24. [PMID: 38971884 PMCID: PMC11227474 DOI: 10.1007/s41061-024-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Bioorthogonal click chemistry has played a transformative role in many research fields, including chemistry, biology, and medicine. Click reactions are crucial to produce increasingly complex bioconjugates, to visualize and manipulate biomolecules in living systems and for various applications in bioengineering and drug delivery. As biological (model) systems grow more complex, researchers have an increasing need for using multiple orthogonal click reactions simultaneously. In this review, we will introduce the most common bioorthogonal reactions and discuss their orthogonal use on the basis of their mechanism and electronic or steric tuning. We provide an overview of strategies to create reaction orthogonality and show recent examples of mutual orthogonal chemistry used for simultaneous biomolecule labeling. We end by discussing some considerations for the type of chemistry needed for labeling biomolecules in a system of choice.
Collapse
Affiliation(s)
- Kevin R Venrooij
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lucienne de Bondt
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Sevim S, Sanchis-Gual R, Franco C, Aragonès AC, Darwish N, Kim D, Picca RA, Nelson BJ, Ruiz E, Pané S, Díez-Pérez I, Puigmartí-Luis J. Electrostatic catalysis of a click reaction in a microfluidic cell. Nat Commun 2024; 15:790. [PMID: 38278792 PMCID: PMC10817948 DOI: 10.1038/s41467-024-44716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
Electric fields have been highlighted as a smart reagent in nature's enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the availability of reactants in the active reaction site. However, recent progress in developing a clean catalysis that profits from oriented electric fields is limited to theoretical and experimental studies at the single molecule level, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the conventional Cu(I) catalysis. Our custom-built microfluidic cell enhances reagent transport towards the electrified reactive interface. This continuous-flow microfluidic electrostatic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.
Collapse
Affiliation(s)
- Semih Sevim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Roger Sanchis-Gual
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Carlos Franco
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Marti i Franquès 1, 08028, Barcelona, Spain
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, WA, Australia
| | - Donghoon Kim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Diagonal 645, 08028, Barcelona, Spain
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland.
| | - Ismael Díez-Pérez
- Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Josep Puigmartí-Luis
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Marti i Franquès 1, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
4
|
Li T, Peiris CR, Aragonès AC, Hurtado C, Kicic A, Ciampi S, MacGregor M, Darwish T, Darwish N. Terminal Deuterium Atoms Protect Silicon from Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47833-47844. [PMID: 37768872 DOI: 10.1021/acsami.3c11598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In recent years, the hybrid silicon-molecular electronics technology has been gaining significant attention for applications in sensors, photovoltaics, power generation, and molecular electronics devices. However, Si-H surfaces, which are the platforms on which these devices are formed, are prone to oxidation, compromising the mechanical and electronic stability of the devices. Here, we show that when hydrogen is replaced by deuterium, the Si-D surface becomes significantly more resistant to oxidation when either positive or negative voltages are applied to the Si surface. Si-D surfaces are more resistant to oxidation, and their current-voltage characteristics are more stable than those measured on Si-H surfaces. At positive voltages, the Si-D stability appears to be related to the flat band potential of Si-D being more positive compared to Si-H surfaces, making Si-D surfaces less attractive to oxidizing OH- ions. The limited oxidation of Si-D surfaces at negative potentials is interpreted by the frequencies of the Si-D bending modes being coupled to that of the bulk Si surface phonon modes, which would make the duration of the Si-D excited vibrational state significantly less than that of Si-H. The strong surface isotope effect has implications in the design of silicon-based sensing, molecular electronics, and power-generation devices and the interpretation of charge transfer across them.
Collapse
Affiliation(s)
- Tiexin Li
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Marti i Franquès 1, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Bentley, Western Australia 6102, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science & Technology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
5
|
El Malah T, Farag H, Awad HM, Abdelrahman MT, Shamroukh AH. Design and Click Synthesis of Novel 1- Substituted-4-(3,4-Dimethoxyphenyl)-1 H-1,2,3-Triazole Hybrids for Anticancer Evaluation and Molecular Docking. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Tamer El Malah
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanaa Farag
- Pesticide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanem Mohamed Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Cairo, Egypt
| | - Mohamad Taha Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed Hussien Shamroukh
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Yin J, Cui H, Lei L, Wu K. Electrochemically functionalized graphene for highly sensitive detection of nitrofurazone. Analyst 2022; 147:5011-5017. [DOI: 10.1039/d2an01428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The electrochemically functionalized graphene nanosheets (EGS) possesses more oxygen-containing groups and higher defect level, showing superior electrochemical sensing performance.
Collapse
Affiliation(s)
- Jiaxi Yin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hairong Cui
- College of Life Science, Wuchang University of Technology, Wuhan, 430223, Hubei, China
| | - Ling Lei
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Kangbing Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| |
Collapse
|