1
|
Vicente FA, Tkalec N, Likozar B. Responsive deep eutectic solvents: mechanisms, applications and their role in sustainable chemistry. Chem Commun (Camb) 2025; 61:1002-1013. [PMID: 39661071 DOI: 10.1039/d4cc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In an era so focused on sustainability, it is important to improve chemical processes by developing and using more environmentally friendly solvents and technologies. Deep eutectic solvents (DES) have proven to be a promising replacement for conventional solvents. In recent years, a new type of DES has emerged that responds to various stimuli. These responsive DES (RDES) may offer all the advantages of DES while allowing the recycling and reuse of solvents. As such, RDES can further contribute to a greener future. This review provides an overview of the diverse types of RDES, their switching mechanisms and their application in several fields. Lastly, it offers a critical perspective on current shortcomings and prospects.
Collapse
Affiliation(s)
- Filipa A Vicente
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Nuša Tkalec
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Li Z, Peng G, Pan J, Duan M, Liu S, Dong H. A novel water-in-deep eutectic solvent microemulsions for chemical polishing of single crystal KDP. J Colloid Interface Sci 2025; 677:896-903. [PMID: 39178669 DOI: 10.1016/j.jcis.2024.08.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Microemulsion (ME) has been investigated as a chemical polishing (CP) fluid for effective polishing of single crystal potassium dihydrogen phosphate (KDP), perfectly avoiding the generation of mechanical stress. In this work, a water-in-deep eutectic solvent ME was proposed as the polishing fluid for CP of single crystal KDP. Deep eutectic solvent (DES) is formulated using n-octanol as hydrogen bond donor and methyltrioctylammonium chloride (MTOAC) as hydrogen bond acceptor, with a mass ratio of 2:1. The ME was prepared by mixing DES as the oil phase (12.5 %, wt.), a hydrochloric acid solution as the water phase (12.5 %, wt.), and isopropanol as the cosolvent (75 %, wt.), without adding any other surfactants. The properties of the ME were characterized by conductivity measurements and ultraviolet (UV) spectroscopy. The reactivity of ME with KDP was measured by the conductivity method, and it was higher at low pH values. A hydrochloric acid solution with a pH of 3 was selected as aqueous phase, considering its effects on particle size, salt loading, and static etching rate. The water content affects the polarity of ME and the final water content was determined to be 12.5 % to ensure high polarity of ME. The surface quality of the KDP crystals before and after polishing was examined using grazing incidence X-ray diffraction (GIXRD) analysis. The average roughness of the KDP crystal surface was decreased from 1.96 nm to 1.43 nm, and the root-mean-square (RMS) roughness was reduced from 2.81 nm to 1.86 nm, demonstrating a significant polishing effect. Finally, the polishing mechanism was elucidated in terms of the irreversible chemical reaction between the active components in the microemulsion and the KDP crystals.
Collapse
Affiliation(s)
- Zhongying Li
- College of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Guanyi Peng
- College of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Jinlong Pan
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, PR China
| | - Ming Duan
- College of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Shuai Liu
- College of Chemistry and Chemical Engineering, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Hui Dong
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, PR China.
| |
Collapse
|
3
|
Jiang G, He K, Chen M, Yang Y, Tang T, Tian Y. Development of multifunctional chitosan packaging film by plasticizing novel essential oil-based hydrophobic deep eutectic solvent: Structure, properties, and application. Carbohydr Polym 2025; 347:122701. [PMID: 39486942 DOI: 10.1016/j.carbpol.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
To improve the limited mechanical and water barrier properties of chitosan film while granting extra functionalities simultaneously, present study pioneered the incorporation of chitosan film with newly developed essential oil (EO)-based hydrophobic deep eutectic solvents (HDES, EO:octanoic acid (OA), EO:menthol (ME) and OA:ME:EO). The highest tensile strength (66.22 MPa) and elongation at break (45.99 %) were obtained in OA:ME:EO-40 and OA:ME:EO-80 films, respectively. The OA:EO-based films showed excellent and stable hydrophobicity. HDESs also endowed film with additional functionalities including thermal stability, bio-compatibility, controlled release, antioxidant, and antibacterial capacity. The extension of the storage period of strawberry treated with OA:EO-containing films confirmed their preservation ability. Compared with ME:EO and OA:ME:EO, OA:EO had better compatibility with chitosan matrix and could serve as a promising plasticizer for strengthening functionalities of chitosan film. These results also promote application of HDESs as emerging plasticizers in manufacture of other polymer-based packaging film.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Kaiwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China.
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
4
|
Zhu B, Chen H, Shi L, Liu X. pH-Switchable Surfactant-Based Microemulsions: Reversible Transition between Microemulsification and Demulsification Triggered by Suitable Acids and Bases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25295-25302. [PMID: 39538370 DOI: 10.1021/acs.langmuir.4c03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
pH-switchable surfactant-based microemulsions (SBMEs) are those that can switch reversibly between a monophasic state and a fully phase-separated state under the alternation of acids and bases, which is rarely reported. By using an equimolar mixture of sodium dodecyl sulfate and N,N-dimethyldodecylamine (SDS-C12A) as a pH-switchable surfactant, a pH-switchable SDS-C12A-based microemulsion (SDS-C12A-ME) has been fabricated for the first time. The main principles of the reversible switching are the reversible destruction/formation of the emulsifier, SDS-C12A-n-butanol, film at the oil-water interface due to the alternating protonation/deprotonation of C12A caused by acids and bases. The byproducts, H2O and salt, had an adverse effect on the reversibility of SDS-C12A-ME, with salt having a greater adverse effect than H2O. However, the reversibility of SDS-C12A-ME could be enhanced by suitable acids and bases. For example, for the same oil-in-water (O/W) SDS-C12A-ME, the number of switching cycles with HCl-choline hydroxide (ChOH) as a stimulus can be as large as 11, but only 3 with HCl-NaOH as a stimulus. By using the methyl methacrylate photochemical polymerization as a model, such a pH-switchable SBME can function as a recyclable reaction medium, while the resultant poly(methyl methacrylate) has a considerably reproducible molecular weight and narrow molecular weight distribution (polydispersity index is around 1.2) over three cycles. It is anticipated that the results presented in this work will serve as a reference for the design and fabrication of pH-switched SBMEs and also that such pH-switched SBMEs may have potential applications in practical technological areas such as industrial reaction media, drug delivery, microreactors, etc.
Collapse
Affiliation(s)
- Bo Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Liwen Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Zanyu Technology Group Co. Ltd., Hangzhou 310009, P. R. China
| | - Xuefeng Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
Anjali, Pandey S. Formation of Ethanolamine-Mediated Surfactant-Free Microemulsions Using Hydrophobic Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2254-2267. [PMID: 38232323 DOI: 10.1021/acs.langmuir.3c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrophobic deep eutectic solvents (HDESs) are emerging as versatile, relatively benign, and inexpensive alternatives to conventional organic solvents in a diverse set of applications. In this context, the formation of microemulsions with HDES replacing the oil phase has become an area of active exploration. Because of recent reports on the undesirable toxicity of many common surfactants, efforts are under way to investigate the formation of surfactant-free microemulsions (SFMEs) using HDES as an oil phase. We present SFME formation using HDESs constituted of n-decanoic acid and five (5) structurally different terpenoids [thymol, l(-)-menthol, linalool, β-citronellol, and geraniol] at a 1:1 molar ratio as the oil phase and water as the hydrophilic phase. Ethanolamine (ETA) exhibited the best potential as a hydrotrope among several other similar small molecules. Results showed a drastic increase in water solubility within the HDESs in the presence of ETA. ETA exerted its hydrotropic action at different extent for each DES system via chemical interaction with the H-bond donor (HBD) constituent of the HDES. The optimum hydrotropic concentration (minimum hydrotrope and maximum water retention, XETAOPT) assigned for each DES/ETA/water system and water loading are reported, and the trends are discussed in detail. Ternary phase diagrams are constructed using visual observation and the dye staining method. The area under the single- and multiple-phase regions (assigned in ternary phase diagrams) was estimated. "Pre-Ouzo" enforced by ETA was investigated using dynamic light scattering (DLS) of the DES/ETA/water systems at XETAOPT. A systematic growth in nanoaggregates was observed with the subsequent addition of water in DES/ETA systems while continuously changing the existing microstructure. The presence of a core (oil)-shell (water)-like structure as indicated by the fluorescence response of Nile red in the "pre-Ouzo" region is speculated. We were able to prepare a homogeneous solution of [K3Fe(CN)6] salt in "pre-Ouzo" mixtures with no apparent deviation in the Beer-Lambert law.
Collapse
Affiliation(s)
- Anjali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
6
|
Song L, Jia H, Zhang F, Jia H, Wang Y, Xie Q, Fan F, Wang Q, Wen S. Sustainable Utilization of Surfactant-Free Microemulsion Regulated by CO 2 for Treating Oily Wastes: A Interpretation of the Response Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:960-967. [PMID: 38150588 DOI: 10.1021/acs.langmuir.3c03162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Surfactant-free microemulsions (SFMEs) have been explored extensively to avoid the residual surfactant problem caused by traditional surfactant microemulsions. Many researchers focused on the SFMEs with tertiary amine, which exhibited the typical CO2 response behavior. In this study, the phase diagram of the SFMEs consisting of tripropylamine (TPA), ethanol, and water was readily prepared via the measurements of electrical conductivity. The CO2 response behavior of SFME was confirmed by determination of conductivity and measurement of the average diameter of SFME, which was mainly dependent on the protonation of TPA induced by the additional CO2. The transition of protonated TPA to a more hydrophilic nature from lipophilicity to hydrophilicity should be responsible for the variation of SFME average diameter. In addition, the SFMEs exhibited remarkable solubilizing capacity of crude oil, and three types of SFMEs achieved more than 80% oil removal rate in the washing process of oil sands. It was noted that both oil-in-water and bicontinuous SFMEs could be circularly utilized at least three times with a relatively high oil removal rate (%). Our work provided the insight perspective on the mechanism of SFMEs with a CO2 response behavior.
Collapse
Affiliation(s)
- Lin Song
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fuling Zhang
- Exploration and Development Research Institute of Daqing Oilfield Limited Company, Daqing 163712, Heilongjiang, PR China
| | - Haidong Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuanbo Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiuyu Xie
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fangning Fan
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shijie Wen
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
7
|
Jing J, Qi J, Yang Y, Yue W, Wang N, Li X, Lu H. Multiple-Stimuli-Responsive Surfactant-Free Microemulsions Based on Hydrophobic Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6730-6739. [PMID: 37133283 DOI: 10.1021/acs.langmuir.3c00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrophobic deep eutectic solvents (HDESs) have been applied to colloidal systems such as microemulsions, despite the development of stimulus-responsive HDESs still being in a preliminary stage. Here, menthol and indole were hydrogen bonded to form CO2-responsiveness HDES. A surfactant-free microemulsion constituted of HDES (menthol-indole) as the hydrophobic phase, water as the hydrophilic phase, and ethanol as the double solvent was demonstrated to be CO2- and temperature-responsive. Dynamic light scattering (DLS) proved the single-phase region of the phase diagram, while conductivity and polarity probing techniques confirmed the kind of microemulsion. The ternary phase diagram and DLS methods were used to investigate the responsiveness of CO2 and effect temperature on the microemulsion drop size and behavior of the phase of the HDES/water/ethanol microemulsion. The findings revealed that when temperature increased, the homogeneous phase region increased. The droplet size in the homogeneous phase region of the associated microemulsion may be reversibly and accurately adjusted by adjusting the temperature. Surprisingly, a slight temperature change can cause a significant phase inversion. Furthermore, in the system, there was no demulsification in time for the CO2/N2 responsiveness process but rather the production of a homogeneous and pellucid aqueous solution.
Collapse
Affiliation(s)
- Junhao Jing
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jie Qi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Yang Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Wenjian Yue
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Na Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaojiang Li
- Chongqing University of Science & Technology, Chongqing, 401331 Chongqing, China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| |
Collapse
|
8
|
Wu Y, Jing J, Li X, Yue W, Qi J, Wang N, Lu H. CO 2-Responsive Hydrophobic Deep Eutectic Solvent Based on Surfactant-Free Microemulsion-Mediated Synthesis of BaF 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1181-1189. [PMID: 36633940 DOI: 10.1021/acs.langmuir.2c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new form of surfactant-free microemulsion (SFME) including hydrophobic deep eutectic solvent (HDES)/ethanol/water was constructed based on its CO2 response, and three regions, that is, HDES-in-water (HDES/W), bicontinuous (B.C.), and water-in-HDES (W/HDES) regions, were recognized. It is anticipated that SFMEs with tunable microstructures have outstanding applications as nanoreactors in reaction processes. The feasibility of preparing nanoparticles from HDES/ethanol/water SFME using barium fluoride (BaF2) as a model nanoparticle was investigated. HDES-based microemulsions benefit from HDES's excellent properties (novel, low toxicity, CO2-responsive, easy availability) and have potential in universal reactions, drug delivery, advanced material fabrication, etc. In this research, HDES-based microemulsions were prepared using HDES as the oil phase. Phase equilibria and microstructure were investigated using a ternary phase diagram, UV spectrophotometry, and the conductivity method. The CO2 switchable characteristics of the HDES-based microemulsions were investigated. HDES-based microemulsions were proposed as nanoreactors for the synthesis of barium fluoride nanomaterials. The microemulsion structure can modulate the size, morphology, and physicochemical properties of the nanoparticles through the CO2 switchable properties. It is argued that nanoreactors constructed with versatile HDES will offer a new direction for creation of cutting-edge scientific applications.
Collapse
Affiliation(s)
- Yang Wu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, PR China
| | - Junhao Jing
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, PR China
| | - Xiaojiang Li
- Chongqing University of Science & Technology, Chongqing, Chongqing401331, China
| | - Wenjian Yue
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, PR China
| | - Jie Qi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, PR China
| | - Na Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, PR China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, PR China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu610500, PR China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu610500, PR China
| |
Collapse
|
9
|
Wang J, Li M, Duan L, Lin Y, Cui X, Yang Y, Wang C. Deep Eutectic Systems as Novel Vehicles for Assisting Drug Transdermal Delivery. Pharmaceutics 2022; 14:2265. [PMID: 36365084 PMCID: PMC9692497 DOI: 10.3390/pharmaceutics14112265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, deep eutectic systems (DES) emerged as novel vehicles for facilitating the transdermal delivery of various drugs, including polysaccharides, proteins, insulin, vaccine, nanoparticles, and herb extracts. The objective of this study is to conduct a comprehensive review of the application of DES to transdermal drug delivery, based on previous work and the reported references. Following a brief overview, the roles of DES in TDDS, the modes of action, as well as the structure-activity relationship of DES are discussed. Particularly, the skin permeation of active macromolecules and rigid nanoparticles, which are the defining characteristics of DES, are extensively discussed. The objective is to provide a comprehensive understanding of the current investigation and development of DES-based transdermal delivery systems, as well as a framework for the construction of novel DES-TDDS in the future.
Collapse
Affiliation(s)
- Jinbao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Mingjian Li
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Langhuan Duan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|