1
|
Zhou L, Rao C, Pang Y, Yang D, Lou H, Qiu X. More Accurate Method for Evaluating the Activity of Photocatalytic Hydrogen Evolution and Its Reaction Kinetics Equation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3431-3438. [PMID: 36802455 DOI: 10.1021/acs.langmuir.2c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photocatalytic water splitting to hydrogen is a sustainable energy conversion method. However, there is a lack of sufficiently accurate measurement methods for an apparent quantum yield (AQY) and a relative hydrogen production rate (rH2) at the moment. Thus, a more scientific and reliable evaluation method is highly required to allow the quantitative comparison of photocatalytic activity. Herein, a simplified kinetic model of photocatalytic hydrogen evolution was established, the corresponding photocatalytic kinetic equation was deduced, and a more accurate calculation method is proposed for the AQY and the maximum hydrogen production rate vH2,max. At the same time, new physical quantities, absorption coefficient kL and specific activity SA, were proposed to sensitively characterize the catalytic activity. The scientificity and practicality of the proposed model and the physical quantities were systematically verified from the theoretical and experimental levels.
Collapse
Affiliation(s)
- Lan Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Cheng Rao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Li Y, Shu S, Huang L, Liu J, Liu J, Yao J, Liu S, Zhu M, Huang L. Construction of a novel double S-scheme structure WO 3/g-C 3N 4/BiOI: Enhanced photocatalytic performance for antibacterial activity. J Colloid Interface Sci 2023; 633:60-71. [PMID: 36434936 DOI: 10.1016/j.jcis.2022.11.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
In recent years, the threat to human health from bacteria in wastewater has attracted attention, and photocatalytic technology has emerged as a promising strategy for inactivating bacteria in water. Therefore, it is of great research value to develop a novel high-efficiency photocatalytic system with the visible light response. We successfully designed a double S-scheme heterojunction composite WO3/g-C3N4/BiOI (WCB) in this paper. The preparation of WCB composites was demonstrated by a series of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The antibacterial effects of photocatalysts against representative Gram-negative strain Escherichia coli (E. coli) and Gram-positive strain Staphylococcus aureus (S. aureus) were tested under LED light irradiation. The novel photocatalyst presented excellent antibacterial properties, inactivating E. coli in 12 min and S. aureus in 20 min. The bacterial cell inactivation process was studied by scanning electron microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Active species capture experiments show that the active species present in the WCB composites in the process of inactivating bacteria are h+, e-, OH and O2-. In conclusion, the synthesized double S-scheme WCB photocatalyst exhibits remarkable photocatalytic antibacterial activity under LED light and has broad prospects for practical application in water antibacterial treatment.
Collapse
Affiliation(s)
- Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Shuangxiu Shu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Liying Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiawei Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiao Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuai Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Menghao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijing Huang
- Institute of Micro-Nano Optoelectronic and Terahertz Technology, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Xia X, Xie C, Che Q, Yang P. Potassium-Derived Charge Channels in Boron-Doped g-C 3N 4 Nanosheets for Photocatalytic NO Oxidation and Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1250-1261. [PMID: 36623173 DOI: 10.1021/acs.langmuir.2c03035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The application of graphitic carbon nitride (g-C3N4) in photocatalytic NO oxidation was limited due to severe recombination of photogenerated carriers and low concentration of oxidizing species. In this work, K and B were introduced into the interlayer and in-plane framework of g-C3N4 to address this challenge through the thermal polymerization process. The synthesized K-doped B-g-C3N4 nanosheets exhibited expanded light absorption and low charge recombination efficiency. In addition, the doping of K and B reduced the band gap of g-C3N4, which corresponded to enhanced light absorption. B was introduced into the in-plane structure by replacing C atoms, which adjusted the in-plane electron distribution. K was inserted into the interlayer by binding to the N and C atoms of adjacent layers. K-derived electron transfer channels were constructed, which increased electron delocalization and expanded the π-conjugate system. More electrons were transferred through the interlayer channels and were involved in the reaction process. The severe carrier recombination and weak transfer were improved due to the synergistic effect of K and B doping. K-doped B-g-C3N4 nanosheets exhibited enhanced generation of superoxide radicals and hydroxyl radicals, which played a key role during NO oxidation. The photocatalytic NO oxidation efficiency of codoped g-C3N4 nanosheets reached 61%, which was 2.1 and 1.2 times of that of pristine g-C3N4 and B-doped g-C3N4, respectively. The codoped g-C3N4 sample still exhibited stable photocatalytic NO oxidation efficiency after five cycles. This result provided a potential idea for improving the charge distribution and transfer of layered materials by codoping metallic and nonmetallic elements and for photocatalytic NO oxidation.
Collapse
Affiliation(s)
- Xiang Xia
- School of Material Science and Engineering, University of Jinan, Jinan250022, P. R. China
| | - Cong Xie
- School of Material Science and Engineering, University of Jinan, Jinan250022, P. R. China
| | - Quande Che
- School of Material Science and Engineering, University of Jinan, Jinan250022, P. R. China
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan250022, P. R. China
| |
Collapse
|
4
|
Xu B, Zhang H, Xia X, Ji K, Ji X, Yang P. Nanoarchitectonics of g-C 3N 4 Nanosheets with a AuCu Enhancement Effect for Superior Photo- and Electrochemical Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10225-10233. [PMID: 35939646 DOI: 10.1021/acs.langmuir.2c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AuCu alloy nanoparticles (NPs) were embedded in superior thin g-C3N4 nanosheets by a mechanochemical pre-reaction and subsequent thermal polymerization at high temperature. The introduction of AuCu NPs increased conductivity, decreased the band gap, expended light absorption, and improved the separation and transfer efficiencies of photogenerated electrons and holes. Moreover, the uniform distribution of AuCu NPs in g-C3N4 nanosheets is ascribed to the pre-reaction of bulk g-C3N4 and metal salts to create activity cites. The adsorption ability in the visible light region was improved due to the plasma effect of Au. AuCu/g-C3N4 composites (AuCu/CN-1%) with optimized component ratios revealed the highest transient photocurrent responses, the lowest electrochemical impedance arc radius, and the best photocatalytic H2 evolution rate of 930.2 μmol g-1 h-1. These findings exhibited that loading AuCu bimetallic NPs could efficiently offset some disadvantages of g-C3N4 and improve its photocatalytic performances.
Collapse
Affiliation(s)
- Baogang Xu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongyu Zhang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiang Xia
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Kang Ji
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xingshuai Ji
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|