1
|
Molina Panadero I, Falcón Torres J, Hmadcha A, Princiotto S, Cutarella L, Mori M, Dallavalle S, Christodoulou MS, Smani Y. Antibacterial activity of tamoxifen derivatives against methicillin-resistant Staphylococcus aureus. Front Pharmacol 2025; 16:1549288. [PMID: 40371342 PMCID: PMC12075203 DOI: 10.3389/fphar.2025.1549288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
The development of new antimicrobial therapeutic strategies requires urgent attention to prevent the tens of millions of deaths predicted to occur by 2050 as a result of multidrug-resistant (MDR) bacterial infections. This study aimed to discover new tamoxifen derivatives with antimicrobial potential, particularly targeting methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of 22 tamoxifen derivatives was determined against S. aureus reference and MRSA strains using microdilution assays. The antibacterial effects of selected tamoxifen derivatives against MRSA (USA7 strain) were assessed through bacterial growth assays. Additionally, bacterial membrane permeability and molecular dynamics (MD) simulation assays were performed. The MIC of the tamoxifen derivatives against reference S. aureus and MRSA strains ranged from to 16 to >64 μg/mL. Bacterial growth assays demonstrated that tamoxifen derivatives 2, 5, and 6, the only compounds bearing the electron-donating hydroxyl group in the para position on both phenyl rings of the tamoxifen skeleton, dose-dependently reduced the growth of the USA7 strain. Moreover, treatment of MRSA with derivatives 2 and 5 resulted in a slight increase of membrane permeabilization. Extensive MD simulations on the interaction between 5 and 6 and the S. aureus membrane model suggest that the compounds do not act by destabilizing the membrane integrity. These findings suggest that tamoxifen derivatives exhibit antibacterial activity against MRSA, potentially broadening the spectrum of available drug treatments for combating antimicrobial-resistant S. aureus.
Collapse
Affiliation(s)
- Irene Molina Panadero
- Andalusian Center of Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), University of Pablo de Olavide - Seville, Seville, Spain
| | - Javier Falcón Torres
- Andalusian Center of Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), University of Pablo de Olavide - Seville, Seville, Spain
| | - Abdelkrim Hmadcha
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide, Seville, Spain
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), Valencia, Spain
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Luigi Cutarella
- Department f Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mattia Mori
- Department f Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Michael S. Christodoulou
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Younes Smani
- Andalusian Center of Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), University of Pablo de Olavide - Seville, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
van Dinteren S, Ritsema JH, Sanders MG, Meijerink J, Vincken JP, Araya-Cloutier C. Unraveling the molecular drivers of antibacterial prenylated (iso)flavonoids and chalcones against Streptococcus mutans. Sci Rep 2025; 15:14776. [PMID: 40295581 PMCID: PMC12037724 DOI: 10.1038/s41598-025-98782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Given the negative side effects and increased resistance associated with conventional oral antimicrobials, prenylated phenolics are promising alternatives to combat the oral pathogen Streptococcus mutans. A total of 40 prenylated phenolics were evaluated for their antibacterial activity against S. mutans. Eleven prenylated phenolics were purified from licorice (Glycyrrhiza spp.) spent, including the newly discovered double prenylated 2-arylbenzofuran, isokanzonol V. Twenty-eight compounds showed similar potency as chlorhexidine. Activity was correlated with structural properties and novel structure-activity relationships were established: (i) Hydrophobic volume was the main driver associated to activity (double prenylated phenolics were consistently more active than single prenylated phenolics); (ii) the conversion of flavanones to chalcones by C-ring opening increases molecular length and planarity as well as antibacterial activity, and (iii) active single prenylated isoflavones have balanced molecular hydrophilicity. Hence, double or single prenylated phenolics featuring planarity, an extended configuration, and balanced hydrophilicity hold promise for S. mutans control.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA, Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA, Wageningen, The Netherlands
| | - Janniek Henrieke Ritsema
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA, Wageningen, The Netherlands
| | - Mark Gerardus Sanders
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA, Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Zhang F, Ding J, Liu S, Huang G, Deng S, Gao M, Liu H, Lv W, Zeng X, Xin B, Xu C. Mycoidesin, a novel lantibiotic, exhibits potent bacteriostatic activity against Listeria monocytogenes and effectively controls its growth in beef. Appl Environ Microbiol 2025; 91:e0006725. [PMID: 40130839 PMCID: PMC12016531 DOI: 10.1128/aem.00067-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Listeria monocytogenes can cause severe listeriosis, with the consumption of contaminated food being an important route of its transmission. Biopreservatives can be used for the prevention and control of L. monocytogenes in food. In this study, we identified a novel lantibiotic, mycoidesin, with potent bacteriostatic activity against L. monocytogenes. It exhibited 4- to 16-fold higher bacteriostatic activity against the L. monocytogenes strains than nisin A. Analysis of the mode of action of mycoidesin revealed that it exerted bacteriostatic activity against L. monocytogenes ATCC 19111 at low and high concentrations (1×-32× MIC, 0.39-12.5 µM). It blocked cell wall synthesis by binding to Lipid II and inhibiting the growth of L. monocytogenes. For other sensitive strains, such as Bacillus cereus CMCC 63301, mycoidesin exerted a bacteriostatic effect at a low concentration (1× MIC, 1.56 µM) via the same mechanism, whereas it exerted a bactericidal effect at high concentrations (2×-8× MIC, 3.13-12.5 µM), which can damage the cell membrane and cause cell death. The stability test showed that mycoidesin had increased stability compared to nisin A. Additionally, mycoidesin showed low cytotoxic and hemolytic activity. Furthermore, mycoidesin effectively inhibited the growth of L. monocytogenes in beef and delayed the decline in beef quality. Our study demonstrates the potential of mycoidesin as a biopreservative to prevent L. monocytogenes contamination and improve the safety of meat and meat products in the food industry. IMPORTANCE This study aimed to identify highly effective, stable, and safe natural bacteriocin preservatives with anti-Listeria monocytogenes activity. We isolated a novel class II lantibiotic, mycoidesin, which exhibited more efficient bacteriostatic activity against L. monocytogenes and increased stability compared to the applied bacteriocin food preservative, nisin A. Mycoidesin also showed favorable biosafety. Moreover, mycoidesin could be effectively used for controlling L. monocytogenes in beef, demonstrating its potential as a biopreservative to prevent L. monocytogenes-related contamination and improve the safety of meat and meat products in the agricultural and food industries.
Collapse
Affiliation(s)
- Fei Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Jiajia Ding
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Shu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Guoqiang Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shulin Deng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Mengyu Gao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Hualin Liu
- Guangdong Perfect Life Health Science and Technology Research Institute Co. Ltd, Zhongshan, Guangdong, China
| | - Wanjing Lv
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Bingyue Xin
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Congcong Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
4
|
Crnčević D, Krce L, Brkljača Z, Cvitković M, Babić Brčić S, Čož-Rakovac R, Odžak R, Šprung M. A dual antibacterial action of soft quaternary ammonium compounds: bacteriostatic effects, membrane integrity, and reduced in vitro and in vivo toxicity. RSC Adv 2025; 15:1490-1506. [PMID: 39822568 PMCID: PMC11737066 DOI: 10.1039/d4ra07975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold. Our findings revealed that these compounds primarily exhibit a bacteriostatic mode of action, effectively suppressing bacterial growth even at concentrations exceeding their minimum inhibitory concentrations (MICs). Unlike traditional QACs, fluorescence spectroscopy and microscopy demonstrated membrane preservation during treatment, with reduced membrane integration compared to cetylpyridinium chloride (CPC), as corroborated by parallel artificial membrane permeability assays. Additionally, molecular dynamics simulations revealed "hook-like" conformations that limit lipid bilayer penetration and promote the formation of larger aggregates, reducing their effective concentration and minimizing cytotoxic effects. Interestingly, secondary antibacterial mechanisms, including inhibition of protein synthesis, were observed, further enhancing their activity. Zebrafish embryotoxicity and in vitro cytotoxicity studies confirmed significantly lower toxicity compared to CPC. By addressing limitations associated with conventional QACs, including toxicity, resistance, and environmental persistence, these soft QACs provide a promising foundation for next-generation antimicrobials. This work advances the understanding of QAC mechanisms while paving the way for safer, eco-friendly applications in healthcare, agriculture, and industrial settings.
Collapse
Affiliation(s)
- Doris Crnčević
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
- University of Split, Faculty of Science, Doctoral Study in Biophysics R. Bošković 33 Split Croatia
| | - Lucija Krce
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | | | - Mislav Cvitković
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | - Sanja Babić Brčić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Renata Odžak
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| | - Matilda Šprung
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| |
Collapse
|
5
|
Zheng Y, Chi J, Ou J, Jiang L, Wang L, Luo R, Yan Y, Xu Z, Peng T, Cai J, Wu C, Teng P, Quan G, Lu C. Imidazole-Rich, Four-Armed Host-Defense Peptidomimetics as Promising Narrow-Spectrum Antibacterial Agents and Adjuvants against Pseudomonas Aeruginosa Infections. Adv Healthc Mater 2024; 13:e2400664. [PMID: 39039988 DOI: 10.1002/adhm.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Indexed: 07/24/2024]
Abstract
The development of narrow-spectrum antimicrobial agents is paramount for swiftly eradicating pathogenic bacteria, mitigating the onset of drug resistance, and preserving the homeostasis of bacterial microbiota in tissues. Owing to the limited affinity between the hydrophobic lipid bilayer interior of bacterial cells and most hydrophilic, polar peptides, the construction of a distinctive class of four-armed host-defense peptides/peptidomimetics (HDPs) is proposed with enhanced specificity and membrane perturbation capability against Pseudomonas aeruginosa by incorporating imidazole groups. These groups demonstrate substantial affinity for unsaturated phospholipids, which are predominantly expressed in the cell membrane of P. aeruginosa, thereby enabling HDPs to exhibit narrow-spectrum activity against this bacterium. Computational simulations and experimental investigations have corroborated that the imidazole-rich, four-armed peptidomimetics exhibit notable selectivity toward bacteria over mammalian cells. Among them, 4H10, characterized by its abundant and densely distributed imidazole groups, exhibits impressive activity against various clinically isolated P. aeruginosa strains. Moreover, 4H10 has demonstrated potential as an antibiotic adjuvant, enhancing doxycycline accumulation and exerting effects on intracellular targets by efficiently disrupting bacterial cell membranes. Consequently, the hydrogel composed of 4H10 and doxycycline emerged as a promising topical agent, significantly diminishing the skin P. aeruginosa burden by 97.1% within 2 days while inducing minimal local and systemic toxicity.
Collapse
Affiliation(s)
- Yuwei Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jiayu Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Ling Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Rui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Yilang Yan
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Zejun Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Peng Teng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| |
Collapse
|
6
|
Sharma P, Vaiwala R, Gopinath AK, Chockalingam R, Ayappa KG. Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7791-7811. [PMID: 38451026 DOI: 10.1021/acs.langmuir.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Amar Krishna Gopinath
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rajalakshmi Chockalingam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| |
Collapse
|
7
|
Princiotto S, Casciaro B, G Temprano A, Musso L, Sacchi F, Loffredo MR, Cappiello F, Sacco F, Raponi G, Fernandez VP, Iucci T, Mangoni ML, Mori M, Dallavalle S, Pisano C. The antimicrobial potential of adarotene derivatives against Staphylococcus aureus strains. Bioorg Chem 2024; 145:107227. [PMID: 38387400 DOI: 10.1016/j.bioorg.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 μM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Bruno Casciaro
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alvaro G Temprano
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Sacchi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Sacco
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Maria Luisa Mangoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | | |
Collapse
|
8
|
Wang Y, Stebe KJ, de la Fuente-Nunez C, Radhakrishnan R. Computational Design of Peptides for Biomaterials Applications. ACS APPLIED BIO MATERIALS 2024; 7:617-625. [PMID: 36971822 PMCID: PMC11190638 DOI: 10.1021/acsabm.2c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Computer-aided molecular design and protein engineering emerge as promising and active subjects in bioengineering and biotechnological applications. On one hand, due to the advancing computing power in the past decade, modeling toolkits and force fields have been put to use for accurate multiscale modeling of biomolecules including lipid, protein, carbohydrate, and nucleic acids. On the other hand, machine learning emerges as a revolutionary data analysis tool that promises to leverage physicochemical properties and structural information obtained from modeling in order to build quantitative protein structure-function relationships. We review recent computational works that utilize state-of-the-art computational methods to engineer peptides and proteins for various emerging biomedical, antimicrobial, and antifreeze applications. We also discuss challenges and possible future directions toward developing a roadmap for efficient biomolecular design and engineering.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cesar de la Fuente-Nunez
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Greenfield ML, Martin LM, Joodaki F. Computing Individual Area per Head Group Reveals Lipid Bilayer Dynamics. J Phys Chem B 2022; 126:10697-10711. [PMID: 36475708 DOI: 10.1021/acs.jpcb.2c04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid bilayers express a range of phases from solid-like to gel-like to liquid-like as a function of temperature and lipid surface concentration. The area occupied per lipid head group serves as one useful indicator of the bilayer phase, in conjunction with the two-dimensional radial distribution function (i.e., structure factor) within the bilayer. Typically, the area per head group is determined by dividing the bilayer area equally among all head groups. Such an approach is less satisfactory for a multicomponent set of diverse lipids. In this work, area determination is performed on a lipid-by-lipid basis by attributing to a lipid the volume that surrounds each atom. Voronoi tessellation provides this division of the interfacial region on a per-atom basis. The method is applied to a multicomponent system of water, NaCl, and 19 phospholipid types that was devised recently [Langmuir2022, 38, 9481-9499] as a computational representation of the Gram-positive Staphylococcus aureus phospholipid bilayer. Results demonstrate that lipids and water molecules occupy similar extents of area within the interfacial region; ascribing area only to head groups implicitly incorporates assumptions about head group hydration. Results further show that lipid tails provide non-negligible contributions to area on the membrane side of the bilayer-water interface. Results for minimum and maximum area of individual lipids reveal that spontaneous fluctuations displace head groups more than 10 Å from the interfacial region during an NPT simulation at 310 K, leading to a zero contribution to total area at some times. Total area fluctuations and fluctuations per individual lipid relax with a correlation time of ∼10 ns. The method complements density profile as an approach to quantify the structure and dynamics of computational lipid bilayers.
Collapse
Affiliation(s)
- Michael L Greenfield
- Department of Chemical Engineering, 360 Fascitelli Center for Advanced Engineering, University of Rhode Island, Kingston, Rhode Island02881, United States
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island02881, United States
| | - Faramarz Joodaki
- Department of Chemical Engineering, 360 Fascitelli Center for Advanced Engineering, University of Rhode Island, Kingston, Rhode Island02881, United States
| |
Collapse
|