1
|
Lachowski K, Chiang HT, Torkelson K, Zhou W, Zhang S, Pfaendtner J, Pozzo LD. Anisotropic Gold Nanomaterial Synthesis Using Peptide Facet Specificity and Timed Intervention. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15878-15888. [PMID: 37910774 PMCID: PMC10653084 DOI: 10.1021/acs.langmuir.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Thin metal particles with two-dimensional (2D) symmetry are attractive for multiple applications but are difficult to synthesize in a reproducible manner. Although molecules that selectively adsorb to facets have been used to control nanoparticle shape, there is still limited research into the temporal control of growth processes to control these structural outcomes. Moreover, much of the current research into the growth of thin 2D particles lacks mechanistic details. In this work, we study why the substitution of isoleucine for methionine in a gold-binding peptide (Z2, RMRMKMK) results in an increase in gold nanoparticle anisotropy. Nanoplatelet growth in the presence of Z2M246I (RIRIKIK) is characterized using in situ small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. Fitting time-resolved SAXS profiles reveal that 10 nm-thick particles with 2D symmetry are formed within the first few minutes of the reaction. Next, through a combination of electron diffraction and molecular dynamics simulations, we show that substitution of methionine for isoleucine increases the (111) facet selectivity in Z2M246I, and we conclude that this is key to the growth of nanoplatelets. However, the potential application of nanoplatelets formed using Z2M246I is limited due to their uncontrolled lateral growth, aggregation, and rapid sedimentation. Therefore, we use a liquid-handling robot to perform temporally controlled synthesis and dynamic intervention through the addition of Z2 to nanoplatelets grown in the presence of Z2M246I at different times. UV-vis spectroscopy, dynamic light scattering, and electron microscopy show that dynamic intervention results in control over the mean size and stability of plate-like particles. Finally, we use in situ UV-vis spectroscopy to study plate-like particle growth at different times of intervention. Our results demonstrate that both the selectivity and magnitude of binding free energy toward lattices are important for controlling nanoparticle growth pathways.
Collapse
Affiliation(s)
- Kacper
J. Lachowski
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98105, United States
| | - Huat Thart Chiang
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Kaylyn Torkelson
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Wenhao Zhou
- Department
of Material Science and Engineering, University
of Washington, Seattle, Washington 98105, United States
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Shuai Zhang
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98105, United States
- Department
of Material Science and Engineering, University
of Washington, Seattle, Washington 98105, United States
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Lilo D. Pozzo
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98105, United States
- Department
of Material Science and Engineering, University
of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
2
|
Bharti K, Sk MA, Sadhu KK. Seed free synthesis of polyethylene glycol stabilized gold nanoprisms exploiting manganese metal at low pH. NANOSCALE ADVANCES 2023; 5:3729-3736. [PMID: 37441245 PMCID: PMC10334414 DOI: 10.1039/d3na00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Manganese powder with a suitable potential (, -1.19 V) has never been investigated for the reduction of Au3+ (, 1.00 V). In this study, we have utilized and low pH dependent for the polyethylene glycol stabilized gold nanoprism synthesis by reducing AuCl-4 in the presence of thiol terminated polyethylene glycol as the stabilizing agent. The synthetic methodology for gold nanoprisms has been optimized by pH and Cl- ion combination. Time dependent absorbance studies have been conducted to demonstrate the role of various reaction parameters such as the stabilizing agent, HCl concentration, temperature, and Mn metal. The synthesized gold nanoprism has been further utilized as a seed for nucleic acid and selected amino acid mediated edge and surface growth, respectively.
Collapse
Affiliation(s)
- Kanika Bharti
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - Md Azimuddin Sk
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|
3
|
Sahu JK, Singh O, Chakraborty D, Sadhu KK. Growth Reaction of Gold Nanorods in the Presence of Mutated Peptides and Amine-Modified Single-Stranded Nucleic Acids. Chem Asian J 2023; 18:e202300049. [PMID: 36883962 DOI: 10.1002/asia.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/09/2023]
Abstract
Conformation of biomolecules like DNA, peptides and amino acids play vital role during nanoparticle growth. Herein, we have experimentally explored the effect of different noncovalent interaction between a 5'-amine modified DNA sequence (NH2 -C6 H12 -5'-ACATCAGT-3', PMR) and arginine during the seed-mediated growth reaction of gold nanorods (GNRs). Amino acid-mediated growth reaction of GNRs results in a snowflake-like gold nanoarchitecture. However, in case of Arg, prior incubation of GNRs with PMR selectively produces sea urchin-like gold suprastructures, via strong hydrogen bonding and cation-π interaction between PMR and Arg. This distinctive structure formation strategy has been extended to study the structural modulation caused by two structurally close α-helical RRR (Ac-(AAAAR)3 A-NH2 ) peptide and the lysine mutated KKR (Ac-AAAAKAAAAKAAAARA-NH2 ) peptide with partial helix at the amino terminus. Simulation studies confirm that a greater number of hydrogen bonding and cation-π interaction between the Arg residues and PMR resulted in the gold sea urchin structure for RRR peptide against KKR peptide.
Collapse
Affiliation(s)
- Jitendra K Sahu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Omkar Singh
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|