1
|
Kang Z, Wang Z, Wang J, Liu Q, Pan D, Wu Z, Zeng X, Tu M. Production of bioactive peptides by high-voltage pulsed electric field: Protein extraction, mechanism, research status and collaborative application. Food Chem 2025; 483:144139. [PMID: 40250289 DOI: 10.1016/j.foodchem.2025.144139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025]
Abstract
Bioactive peptides exhibit a variety of potential applications in the fields of medicine, food and cosmetics. However, studies have shown that the traditional preparation is characterized by low efficiency, substantial pollution, limited activities and poor purity, which constrains their further application. High-voltage pulsed electric field (HPEF) technology, as a physical non-thermal processing method, shows unique advantages in bioactive peptide preparation. Through comprehensive analysis, this paper reveals the main principle of HPEF technology, the extraction of proteins (break up cellular tissue), the structural changes of proteins, enzymes and bioactive peptides after treatment, the improvement of bioactive peptides' functional properties and the potential in promoting bioactive peptides' large-scale production. Besides, this paper introduces the application of other non-thermal processing technologies, artificial intelligence and nanotechnology, providing new ways of thinking for the efficient preparation and application of bioactive peptides and establishes a theoretical foundation for the application and promotion of HPEF technology.
Collapse
Affiliation(s)
- Zeyuan Kang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jingjing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
2
|
Liao XL, Zhou JM, Wang Y, Chen ZF, Cai Z. Network pharmacology and transcriptomics reveal androgen receptor as a potential protein target for 6PPD-quinone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177678. [PMID: 39581451 DOI: 10.1016/j.scitotenv.2024.177678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone, or 6PPD-Q) has received increasing attention as an emerging hotspot contaminant. The occurrence of 6PPD-Q in dust and fine atmospheric particles indicates substantial human exposure to this toxicant but the hazards of 6PPD-Q to human health is unknown. We used in silico approaches to identify potential human protein targets of 6PPD-Q and conducted preliminary validation through an in vitro cell proliferation assay and an in vivo transcriptomic analysis of prostate tissues from 6PPD-Q-treated mice. Receptor-based reverse screening and network pharmacology identified four hub targets of 6PPD-Q that were closely related to prostate carcinogenesis. Among these four targets, 6PPD-Q exhibited a strong binding tendency to androgen receptor (AR) with a binding free energy of -23.04 kcal/mol. A support vector machine (SVM) model for predicting chemicals with AR agonism or AR-inactivity was established with good prediction performance (mean prediction accuracy: 0.92). SVM prediction and AR-mediated cell-based assays, with a known AR agonist and a proposed AR inactive agent as positive and negative controls, confirmed that 6PPD-Q displayed AR agonism. Upregulation of Ar mRNA expression (FC = 1.29, p = 0.0404) and its related prostate cancer pathway was observed in the prostate of mice exposed to environmentally realistic concentrations of 6PPD-Q, suggesting a potential role in promoting prostate carcinogenesis. These findings provide evidence that 6PPD-Q agonized AR to exert downstream gene transactivation and imply its prostate cancer risks to humans.
Collapse
Affiliation(s)
- Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia-Ming Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
3
|
Song C, Zhang L. Intelligent Design of Antithrombotic Peptide Targeting Collagen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9661-9668. [PMID: 38664943 DOI: 10.1021/acs.langmuir.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Binding of blood components to collagen was proved to be a key step in thrombus formation. Intelligent Design of Protein Matcher (IDProMat), a neural network model, was then developed based on the principle of seq2seq to design an antithrombotic peptide targeting collagen. The encoding and decoding of peptide sequence data and the interaction patterns of peptide chains at the interface were studied, and then, IDProMat was applied to the design of peptides to cover collagen. The 99.3% decrease in seq2seq loss and 58.3% decrease in MLP loss demonstrated that IDProMat learned the interaction patterns between residues at the binding interface. An efficient peptide, LRWNSYY, was then designed using this model. Validations on its binding on collagen and its inhibition of platelet adhesion were obtained using docking, MD simulations, and experimental approaches.
Collapse
Affiliation(s)
- Changwei Song
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Lin Zhang
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
4
|
Zheng S, Ji Y, Li N, Zhang L. Biomimetic Design of Peptide Inhibitor to Block CD47/SIRPα Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18101-18112. [PMID: 38038444 DOI: 10.1021/acs.langmuir.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
CD47 on the surface of tumor cells has become a research hot spot in immunotherapy and anticancer therapy, as it can bind to SIRPα protein on the surface of macrophages, which ultimately leads to immune escape of tumor cells. In the present study, molecular interactions between CD47 and human SIRPα proteins (including variant 1, V1 and variant 2, V2) were analyzed through molecular dynamics (MD) simulation and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Hydrophobic interactions were found as the main driving force for the binding of CD47 on SIRPα. The residues including pyroglutamate acid (Z)1, L2, E35, Y37, E97, L101, and T102 of CD47 were identified with a significant favorable contribution to the binding of CD47 on SIRPα (both V1 and V2). Based on this, a peptide inhibitor library with the sequence ZLXRTLXEXY was designed (X represents the arbitrary residue of 20 standard amino acids) and then screened using molecular docking, MD simulations, and experimental validation. Finally, a peptide ZLIRTLHEWY was determined with high affinity with SIRPα from 8000 candidates, containing 6/10 residues favorable for the binding on SIRPα V1 and 8/10 residues favorable for the binding on SIRPα V2, which was thus considered to have potential anticancer function.
Collapse
Affiliation(s)
- Si Zheng
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yufan Ji
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Nanxing Li
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Lin Zhang
- Department of Biochemical Engineering and Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
5
|
Xie C, Zhang L. Design and characterization of antithrombotic ClEKnsTy-Au nanoparticles as diagnostic and therapeutic reagents. Phys Chem Chem Phys 2023. [PMID: 37466214 DOI: 10.1039/d3cp01000g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Thrombosis can cause various cardiovascular diseases, which seriously endanger human life. Development of diagnostic and therapeutic reagents for thrombosis at an early stage would be helpful for the improvement of treatment and the reduction of mortality. In the present study, based on an antithrombotic peptide lEKnsTy (lowercase letters represent D-amino acid residues), a diagnostic and therapeutic reagent targeting collagen and the early stage of thrombosis was proposed, where cysteine was introduced into the amino terminus of lEKnsTy to prepare ClEKnsTy, followed by coupling with AuNPs to prepare nanoconjugate AuNP-Cl. The binding of AuNP-Cl on the collagen surface was then confirmed by the molecular dynamics simulations of the binding of ClEKnsTy on collagen, and the experimental results of the binding of AuNP-Cl on collagen. The inhibition of platelet adhesion on the collagen surface by AuNP-Cl was also confirmed. Moreover, the good imaging ability of AuNP-Cl was confirmed by dark-field microscopy. These results indicated that AuNP-Cl was a potential effective diagnostic and therapeutic reagent targeting collagen, which would be helpful for the research and development of multifunctional antithrombotic reagents.
Collapse
Affiliation(s)
- Chen Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
6
|
Chen R, Zheng S, Zhang L. Development of antithrombotic peptides based on the molecular interactions between von Willebrand factor and GPIbα. Phys Chem Chem Phys 2022; 24:22670-22678. [DOI: 10.1039/d2cp03148e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of platelets on vascular endothelia at the damaged site using von Willebrand factor (vWF) as a bridge is of great significance for platelet adhesion and subsequent arterial thrombosis. Molecular...
Collapse
|