1
|
Wang Z, Ma D, Liu J, Xu S, Qiu F, Hu L, Liu Y, Ke C, Ruan C. 4D printing polymeric biomaterials for adaptive tissue regeneration. Bioact Mater 2025; 48:370-399. [PMID: 40083775 PMCID: PMC11904411 DOI: 10.1016/j.bioactmat.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 03/16/2025] Open
Abstract
4D printing polymeric biomaterials can change their morphology or performance in response to stimuli from the external environment, compensating for the shortcomings of traditional 3D-printed static structures. This paper provides a systematic overview of 4D printing polymeric biomaterials for tissue regeneration and provides an in-depth discussion of the principles of these materials, including various smart properties, unique deformation mechanisms under stimulation conditions, and so on. A series of typical polymeric biomaterials and their composites are introduced from structural design and preparation methods, and their applications in tissue regeneration are discussed. Finally, the development prospect of 4D printing polymeric biomaterials is envisioned, aiming to provide innovative ideas and new perspectives for their more efficient and convenient application in tissue regeneration.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Duo Ma
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Liqiu Hu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
Zhang Y, Cai C, Li F, Dong S. Supramolecular Soft Material Enabled by Metal Coordination and Hydrogen Bonding: Stretchability, Self-Healing, Impact Resistance, 3D Printing, and Motion Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300857. [PMID: 37035948 DOI: 10.1002/smll.202300857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Metal coordination can significantly improve the macroscopic performance of many materials by enhancing their dynamic features. In this study, two supramolecular interactions, Fe3+ -carboxylic acid coordination, and structural water-induced hydrogen bonding, into an artificial polymer were introduced. Various attractive features, including flexibility and stretchability, are achieved because of the bulk state and dynamic hydrogen bonds of poly(thioctic acid-water) (poly[TA-H]). These unique features are considerably enhanced after the incorporation of Fe3+ cations into poly[TA-H] because metal coordination increased the mobility of the poly[TA-H] chains. Thus, the poly(thioctic acid-water-metal) (poly[TA-HM]) copolymer exhibited better flexibility and stretchability. Moreover, notable underwater/low-temperature self-healing capacity is obtained via the synergistic effect of the metal and hydrogen bonding. Most of the impact energy is quickly absorbed by poly[TA-H] or poly[TA-HM] and effectively and rapidly dissipated via reversible debonding/bonding via the interactions between the metal and hydrogen. Macroscopic plastic deformation or structural failure is not observed during high-speed (50-70 m s-1 ) impact experiments or high-altitude (90 m) falling tests. Furthermore, poly[TA-HM] displayed good thermal molding properties, which enabled its processing via 3D fused deposition modeling printing. Poly[TA-HM] also showed considerable effectiveness for monitoring complicated, dynamic, and irregular biological activities owing to its highly pressure-sensitive nature.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Aiswarya S, Awasthi P, Banerjee SS. Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|