1
|
Yuqing F, Zhang S, Peng R, Silva J, Ernst O, Lapizco-Encinas BH, Liu R, Du K. Durable Antimicrobial Microstructure Surface (DAMS) Enabled by 3D-Printing and ZnO Nanoflowers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3027-3032. [PMID: 39585791 DOI: 10.1021/acs.langmuir.4c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Numerous studies have been trying to create nanomaterial-based antimicrobial surfaces to prevent infections due to bacterial growth. One major challenge in real-world applications of these surfaces is their mechanical durability. In this study, we introduce durable antimicrobial microstructure surface (DAMS), which integrates DLP 3D-printed microstructures with zinc oxide (ZnO) nanoflowers. The microstructures function as protection armor for the nanoflowers during abrasion. The antimicrobial ability was evaluated by immersing in 2E8 CFU/mL Escherichia coli (E. coli) suspension and then evaluated using electron microscopy. Our results indicated that DAMS reduced bacterial coverage by more than 90% after 12 h of incubation and approximately 50% after 48 h of incubation before abrasion. More importantly, bacterial coverage was reduced by approximately 50% after 2 min of abrasion with a tribometer, and DAMS remains effective even after 6 min of abrasion. These findings highlight the potential of DAMS as an affordable, scalable, and durable antimicrobial surface for various biomedical applications.
Collapse
Affiliation(s)
- Fnu Yuqing
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Mechanical Engineering, University of California, Riverside, California 92521, United States
| | - Shuhuan Zhang
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ruonan Peng
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Justin Silva
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Olivia Ernst
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Rui Liu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Yuqing F, Zhang S, Peng R, Silva J, Ernst O, Lapizco-Encinas BH, Liu R, Du K. Durable Antimicrobial Microstructure Surface (DAMS) Enabled by 3D-Printing and ZnO Nanoflowers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598554. [PMID: 38915492 PMCID: PMC11195153 DOI: 10.1101/2024.06.11.598554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A. Numerous studies have been trying to create nanomaterials based antimicrobial surfaces to combat the growing bacterial infection problems. Mechanical durability has become one of the major challenges to applying those surfaces in real life. In this study, we demonstrate the Durable Antimicrobial Microstructures Surface (DAMS) consisting of DLP 3D printed microstructures and zinc oxide (ZnO) nanoflowers. The microstructures serve as a protection armor for the nanoflowers during abrasion. The antimicrobial ability was tested by immersing in 2E8 CFU/mL Escherichia coli ( E. coli ) suspension and then evaluated using electron microscopy. Compared to the bare control, our results show that the DAMS reduces bacterial coverage by more than 90% after 12 hrs of incubation and approximately 50% after 48 hrs of incubation before abrasion. Importantly, bacterial coverage is reduced by approximately 50% after 2 min of abrasion with a tribometer, and DAMS remains effective even after 6 min of abrasion. These findings highlight the potential of DAMS as an affordable, scalable, and durable antimicrobial surface for various biomedical applications.
Collapse
|
3
|
Ma T, Wang D, Tong W, Zhang S, Wang J. Chemical Etching, Thermally Driven Combination Strategy to Fabricate Superhydrophobic Fe-Based Amorphous Coatings with Excellent Anticorrosion Property: Based on Hydroxylation Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11864-11878. [PMID: 37556763 DOI: 10.1021/acs.langmuir.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Fe-based amorphous coatings are ideal materials for surface protection due to their outstanding mechanical properties and corrosion resistance. However, coating defects are inevitably formed during the preparation of coatings by thermal spray technology, which seriously affects the corrosion performance. Inspired by bionics, conceiving superhydrophobic surfaces with liquid barrier properties has become a new idea for the corrosion protection of metal surfaces. In this work, based on surface hydroxylation, we designed a superhydrophobic Fe-based amorphous coating with corrosion resistance by chemical etching combined with a thermally driven preparation strategy. The obtained superhydrophobic coatings exhibit liquid repellency (contact angle >150°) and excellent corrosion resistance (corrosion current density and passive current density reduced by 3 orders of magnitude). The results revealed that the superhydrophobic behavior stems from the construction of hydroxyl-induced surface micro-/nanomultilevel aggregates (cluster structures). The hydrophobic agent layer deposited on the surface of cluster aggregates and the nanoparticle elements that constitute the clusters dominate the corrosion resistance of the coating. This work provides an effective guide to the design of high-corrosion-resistant Fe-based amorphous alloy coatings and promotes their engineering applications.
Collapse
Affiliation(s)
- Tengda Ma
- Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS, Shenyang 110016, China
| | - Debin Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS, Shenyang 110016, China
- School of Materials Science and Engineering, University of ScienAce and Technology of China, Shenyang 110016, China
| | - Weiping Tong
- Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang 110819, China
| | - Suode Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS, Shenyang 110016, China
| | - Jianqiang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS, Shenyang 110016, China
| |
Collapse
|
4
|
Understanding the dynamics of fluid-structure interaction with an Air Deflected Microfluidic Chip (ADMC). Sci Rep 2022; 12:20399. [PMID: 36437301 PMCID: PMC9701768 DOI: 10.1038/s41598-022-24112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
A deformable microfluidic system and a fluidic dynamic model have been successfully coupled to understand the dynamic fluid-structure interaction in transient flow, designed to understand the dentine hypersensitivity caused by hydrodynamic theory. The Polydimethylsiloxane thin sidewalls of the microfluidic chip are deformed with air pressure ranging from 50 to 500 mbar to move the liquid meniscus in the central liquid channel. The experiments show that the meniscus sharply increased in the first 10th of second and the increase is nonlinearly proportional to the applied pressure. A theoretical model is developed based on the unsteady Bernoulli equation and can well predict the ending point of the liquid displacement as well as the dynamics process, regardless of the wall thickness. Moreover, an overshooting and oscillation phenomenon is observed by reducing the head loss coefficient by a few orders which could be the key to explain the dentine hypersensitivity caused by the liquid movement in the dentine tubules.
Collapse
|