1
|
Chakra A, Puijk C, Vladisavljević GT, Cottin-Bizonne C, Pirat C, Bolognesi G. Surface chemistry-based continuous separation of colloidal particles via diffusiophoresis and diffusioosmosis. J Colloid Interface Sci 2025; 693:137577. [PMID: 40279851 DOI: 10.1016/j.jcis.2025.137577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
The separation of colloidal particles is of great importance in many fields, such as purification, sensing, and bioanalysis. However, separating particles based on their surface physico-chemical properties remains challenging. This study demonstrates through experimental and theoretical analyses that diffusiophoresis and diffusioosmosis enable the continuous separation of carboxylate polystyrene particles with similar sizes and zeta potentials but distinct surface concentrations of carboxyl groups. In the proposed approach, the particles are exposed to salt concentration gradients generated in a double-junction microfluidic device, fed with low and high electrolyte concentration streams. As the particles move across environments with varying salinity levels, their dynamics are affected by the sensitivity of their electrophoretic mobility - and consequently, their apparent zeta potential, which is proportional to it - to the local salt concentration. The apparent zeta potential, measured via electrophoretic light scattering, and its sensitivity to salt concentration are influenced by the ionic conduction occurring near the particle surface whose intensity depends, in turn, on the concentration of surface carboxyl groups. By harnessing these effects, colloids with comparable apparent zeta potentials but different surface concentrations of carboxyl groups are separated with high efficiency when they exhibit opposite apparent zeta potential sensitivities to salt. This simple approach, which relies on an easy-to-operate device with no external energy source, has discipline-spanning potential for the continuous separation of colloids distinguished solely by surface properties like roughness, permeability, heterogeneity, and chemical composition that influence the sensitivities of their electrophoretic mobility and, thus apparent zeta potential, to the salt concentration.
Collapse
Affiliation(s)
- Adnan Chakra
- Department of Chemistry, Imperial College London, London, W12 7TA, United Kingdom
| | - Christina Puijk
- Department of Chemistry, University College London, London, WCH1 0AJ, United Kingdom
| | - Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Cécile Cottin-Bizonne
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1, Villeurbanne, 69622, France
| | - Christophe Pirat
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1, Villeurbanne, 69622, France
| | - Guido Bolognesi
- Department of Chemistry, University College London, London, WCH1 0AJ, United Kingdom.
| |
Collapse
|
2
|
Akdeniz B, Wood JA, Lammertink RGH. Diffusiophoretic Behavior of Polyelectrolyte-Coated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5934-5944. [PMID: 38451220 PMCID: PMC10956496 DOI: 10.1021/acs.langmuir.3c03916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Diffusiophoresis, the movement of particles under a solute concentration gradient, has practical implications in a number of applications, such as particle sorting, focusing, and sensing. For diffusiophoresis in an electrolyte solution, the particle velocity is described by the electrolyte relative concentration gradient and the diffusiophoretic mobility of the particle. The electrolyte concentration, which typically varies throughout the system in space and time, can also influence the zeta potential of particles in space and time. This variation affects the diffusiophoretic behavior, especially when the zeta potential is highly dependent on the electrolyte concentration. In this work, we show that adsorbing a single bilayer (or 4 bilayers) of a polyelectrolyte pair (PDADMAC/PSS) on the surface of microparticles resulted in effectively constant zeta potential values with respect to salt concentration throughout the experimental range of salt concentrations. This allowed a constant potential model for diffusiophoretic transport to describe the experimental observations, which was not the case for uncoated particles in the same electrolyte system. This work highlights the use of simple polyelectrolyte pairs to tune the zeta potential and maintain constant values for precise control of diffusiophoretic transport.
Collapse
Affiliation(s)
- Burak Akdeniz
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Jeffery A. Wood
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Rob G. H. Lammertink
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
3
|
Chakra A, Singh N, Vladisavljević GT, Nadal F, Cottin-Bizonne C, Pirat C, Bolognesi G. Continuous Manipulation and Characterization of Colloidal Beads and Liposomes via Diffusiophoresis in Single- and Double-Junction Microchannels. ACS NANO 2023; 17:14644-14657. [PMID: 37458750 PMCID: PMC10416570 DOI: 10.1021/acsnano.3c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
We reveal a physical mechanism that enables the preconcentration, sorting, and characterization of charged polystyrene nanobeads and liposomes dispersed in a continuous flow within a straight micron-sized channel. Initially, a single Ψ-junction microfluidic chip is used to generate a steady-state salt concentration gradient in the direction perpendicular to the flow. As a result, fluorescent nanobeads dispersed in the electrolyte solutions accumulate into symmetric regions of the channel, appearing as two distinct symmetric stripes when the channel is observed from the top via epi-fluorescence microscopy. Depending on the electrolyte flow configuration and, thus, the direction of the salt concentration gradient field, the fluorescent stripes get closer to or apart from each other as the distance from the inlet increases. Our numerical and experimental analysis shows that although nanoparticle diffusiophoresis and hydrodynamic effects are involved in the accumulation process, diffusio-osmosis along the top and bottom channel walls plays a crucial role in the observed particles dynamics. In addition, we developed a proof-of-concept double Ψ-junction microfluidic device that exploits this accumulation mechanism for the size-based separation and size detection of nanobeads as well as for the measurement of zeta potential and charged lipid composition of liposomes under continuous flow settings. This device is also used to investigate the effect of fluid-like or gel-like states of the lipid membranes on the liposome diffusiophoretic response. The proposed strategy for solute-driven manipulation and characterization of colloids has great potential for microfluidic bioanalytical testing applications, including bioparticle preconcentration, sorting, sensing, and analysis.
Collapse
Affiliation(s)
- Adnan Chakra
- Department
of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
- Department
of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Naval Singh
- Manchester
Centre for Nonlinear Dynamics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Goran T. Vladisavljević
- Department
of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - François Nadal
- Commissariat
à l’Énergie Atomique, BP2, 33114, Le Barp, France
| | - Cécile Cottin-Bizonne
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon 1- CNRS, Université de Lyon, Villeurbanne Cedex, 69622, France
| | - Christophe Pirat
- Institut
Lumière Matière, UMR5306 Université Claude Bernard
Lyon 1- CNRS, Université de Lyon, Villeurbanne Cedex, 69622, France
| | - Guido Bolognesi
- Department
of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
- Department
of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
4
|
Rees-Zimmerman CR, Chan DHH, Armes SP, Routh AF. Diffusiophoresis of latex driven by anionic nanoparticles and their counterions. J Colloid Interface Sci 2023; 649:364-371. [PMID: 37354793 DOI: 10.1016/j.jcis.2023.06.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
HYPOTHESIS Diffusiophoresis of colloidal latex particles has been reported for molecular anions and cations of comparable size. In the present study, this phenomenon is observed for two types of charged colloids acting as multivalent electrolyte: (i) anionic charge-stabilised silica nanoparticles or (ii) minimally-charged sterically-stabilised diblock copolymer nanoparticles. EXPERIMENTS Using a Hele-Shaw cell, a thin layer of relatively large latex particles is established within a sharp concentration gradient of nanoparticles by sequential filling with water, latex particles and nanoparticles. Asymmetric diffusion is observed, which provides strong evidence for diffusiophoresis. Quantification involves turbidity measurements from backlit images. FINDINGS The latex particles diffuse across a concentration gradient of charged nanoparticles and the latex concentration front scales approximately with time1/2. Moreover, the latex particle flux is inversely proportional to the concentration of background salt, confirming electrostatically-driven motion. These observations are consistent with theory recently developed to account for diffusiophoretic motion driven by multivalent ions.
Collapse
Affiliation(s)
- Clare R Rees-Zimmerman
- Institute of Energy and Environmental Flows, Department of Chemical Engineering & Biotechnology, University of Cambridge, Madingley Rise, Cambridge CB3 0EZ, UK
| | - Derek H H Chan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Alexander F Routh
- Institute of Energy and Environmental Flows, Department of Chemical Engineering & Biotechnology, University of Cambridge, Madingley Rise, Cambridge CB3 0EZ, UK.
| |
Collapse
|
5
|
Raj RR, Shields CW, Gupta A. Two-dimensional diffusiophoretic colloidal banding: optimizing the spatial and temporal design of solute sinks and sources. SOFT MATTER 2023; 19:892-904. [PMID: 36648425 DOI: 10.1039/d2sm01549h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute concentration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of colloidal particles, i.e., colloidal banding, induced via diffusiophoresis. The solute gradients are generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar rate. First we study a dipole system, i.e., one source and one sink, and discover that interdipole diffusion and molar rate decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and sink screen each other, leading to a slower enhancement. If the solute molar rate decays at the timescale of interdipole diffusion, an optimal separation distance is obtained such that particle enrichment is maximized. We find that the partition coefficient of solute at the interface between the source and bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio of solute in the source and bulk has a much weaker impact on the optimal dipole separation distance. We also examine an octupole configuration, i.e., four sinks and four sources, arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional solute gradients.
Collapse
Affiliation(s)
- Ritu R Raj
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA.
| | - C Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ankur Gupta
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|