1
|
Chen L, Schmid J, Platek-Mielczarek A, Armstrong T, Schutzius TM. Three-Dimensional Metallic Surface Micropatterning through Tailored Photolithography-Transfer-Plating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46937-46944. [PMID: 39163249 PMCID: PMC11378153 DOI: 10.1021/acsami.4c10550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Precise micropatterning on three-dimensional (3D) surfaces is desired for a variety of applications, from microelectronics to metamaterials, which can be realized by transfer printing techniques. However, a nontrivial deficiency of this approach is that the transferred microstructures are adsorbed on the target surface with weak adhesion, limiting the applications to external force-free conditions. We propose a scalable "photolithography-transfer-plating" method to pattern stable and durable microstructures on 3D metallic surfaces with precise dimension and location control of the micropatterns. Surface patterning on metallic parts with different metals and isotropic and anisotropic curvatures is showcased. This method can also fabricate hierarchical structures with nanoscale vertical and microscale horizontal dimensions. The plated patterns are stable enough to mold soft materials, and the structure durability is validated by 24 h thermofluidic tests. We demonstrate micropatterned nickel electrodes for oxygen evolution reaction acceleration in hydrogen production, showing the potential of micropatterned 3D metallic surfaces for energy applications.
Collapse
Affiliation(s)
- Liyang Chen
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Julian Schmid
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Anetta Platek-Mielczarek
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Tobias Armstrong
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Thomas M Schutzius
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Huang H, Xie L, Chen X, Li W, Marzouki R. Insights into the Corrosion Inhibition Mechanism of Canavalia gladiata Leaf Extract for Copper in Sulfuric Acid Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320302 DOI: 10.1021/acs.langmuir.3c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Canavalia gladiata leaf extract (CGLE) is extracted from crop waste employing a water decoction method. By employing electrochemical techniques, morphology analysis, quantum chemical calculations, and other methods, we extensively investigated the anticorrosion efficacy of CGLE on copper within a H2SO4 solution. The outcomes reveal that at 298 K, a CGLE concentration of 800 mg/L attains a remarkable inhibition efficiency (IE) of 96.8%. Additionally, we examined the impact of CGLE on the corrosion resistance of copper at varying temperatures. Even with rising temperatures, CGLE manages to sustain an IE of over 95%. This indicates that CGLE is mainly chemisorption based on the copper, leading to a strong adsorption. The surface test results show a noteworthy decrease in the extent of copper surface corrosion upon the introduction of CGLE. The study of the adsorption model demonstrates the alignment of CGLE adsorption onto the copper with the Langmuir adsorption.
Collapse
Affiliation(s)
- Hui Huang
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Lihao Xie
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
| | - Xinhuan Chen
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
| | - Wenlong Li
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
| | - Riadh Marzouki
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
Zemła J, Szydlak R, Gajos K, Kozłowski Ł, Zieliński T, Luty M, Øvreeide IH, Prot VE, Stokke BT, Lekka M. Plasma Treatment of PDMS for Microcontact Printing (μCP) of Lectins Decreases Silicone Transfer and Increases the Adhesion of Bladder Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51863-51875. [PMID: 37889219 PMCID: PMC10636731 DOI: 10.1021/acsami.3c09195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The present study investigates silicone transfer occurring during microcontact printing (μCP) of lectins with polydimethylsiloxane (PDMS) stamps and its impact on the adhesion of cells. Static adhesion assays and single-cell force spectroscopy (SCFS) are used to compare adhesion of nonmalignant (HCV29) and cancer (HT1376) bladder cells, respectively, to high-affinity lectin layers (PHA-L and WGA, respectively) prepared by physical adsorption and μCP. The chemical composition of the μCP lectin patterns was monitored by time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the amount of transferred silicone in the μCP process depends on the preprocessing of the PDMS stamps. It is revealed that silicone contamination within the patterned lectin layers inhibits the adhesion of bladder cells, and the work of adhesion is lower for μCP lectins than for drop-cast lectins. The binding capacity of microcontact printed lectins was larger when the PDMS stamps were treated with UV ozone plasma as compared to sonication in ethanol and deionized water. ToF-SIMS data show that ozone-based treatment of PDMS stamps used for μCP of lectin reduces the silicone contamination in the imprinting protocol regardless of stamp geometry (flat vs microstructured). The role of other possible contributors, such as the lectin conformation and organization of lectin layers, is also discussed.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Katarzyna Gajos
- M.
Smoluchowski Institute of Physics, Jagiellonian
University, 30348 Kraków, Poland
| | - Łukasz Kozłowski
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Tomasz Zieliński
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Ingrid H. Øvreeide
- Biophysics
and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, The
Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Małgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
4
|
Ouyang C, Wang Z, Tan B, Brahmia A. Insights into the Anticorrosion Performance of Solanum lyratum Leaf Extract for Copper in Sulfuric Acid Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6666-6680. [PMID: 37126522 DOI: 10.1021/acs.langmuir.2c03396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper, Solanum lyratum leaves were prepared into a corrosion inhibitor by a pure water extraction method. As a natural plant, S. lyratum leaf extract as a corrosion inhibitor has green features. S. lyratum leaf extract (SLLE) can effectively inhibit the corrosion of Cu in H2SO4 solution. The protective effect on copper in 0.5 mol/L H2SO4 solution was studied by electrochemical measurement, Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and theoretical calculation. These results showed that the maximum corrosion inhibition efficiency (η) of SLLE for copper obtained in the electrochemical measurement at different temperatures is more than 90%. The adsorption of SLLE on copper surfaces conforms to the Langmuir isotherm adsorption model. FTIR and XPS showed the bonding information. SEM and AFM proved that the SLLE can protect the copper from corrosion media. The interaction and inhibition mechanism between the SLLE and copper surface was further revealed at the molecular level by theoretical calculation.
Collapse
Affiliation(s)
- Congrui Ouyang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Zhenqiang Wang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Bochuan Tan
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Ameni Brahmia
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences, University of Sfax, 1171, Sfax 3000, Tunisia
| |
Collapse
|
5
|
Stability of supported hybrid lipid bilayers on chemically and topographically-modified surfaces. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|