1
|
Du Y, Luo Y, Gu Z. Molecular dynamics simulations reveal concentration-dependent blockage of graphene quantum dots to water channel protein openings. Sci Rep 2024; 14:26485. [PMID: 39489799 PMCID: PMC11532551 DOI: 10.1038/s41598-024-77592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Graphene quantum dots (GQDs) have attracted significant attention across various scientific research areas due to their exceptional properties. However, studies on the potential toxicity of GQDs have yielded conflicting results. Therefore, a comprehensive evaluation of the toxicity profile of GQDs is essential for a thorough understanding of their biosafety. In this work, employing a molecular dynamics (MD) simulation approach, we investigate the interactions between GQDs and graphene oxide quantum dots (GOQDs) with the AQP1 water channel protein, aiming to explore the potential biological influence of GQDs/GOQDs. Our MD simulation results reveal that GQDs can adsorb to the loop region around the openings of AQP1 water channels, resulting in the blockage of these channels and potential toxicity. Interestingly, this blockage is concentration-dependent, with higher GQD concentrations leading to a greater likelihood of blockage. Additionally, GOQDs show a lower probability of blocking the openings of AQP1 water channels compared to GQDs, due to the hydrophobicity of the loop regions around the openings, which ultimately leads to lower interaction energy. Therefore, these findings provide new insights into the potential adverse impact of GQDs on AQP1 water channels through the blockage of their openings, offering valuable molecular insights into the toxicity profile of GQD nanomaterials.
Collapse
Affiliation(s)
- Yunbo Du
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| |
Collapse
|
2
|
Luo Y, Gu Z, Perez-Aguilar JM, Luo Y. Potential toxicity of Graphene (Oxide) quantum dots to human intestinal fatty acid binding protein (HIFABP) via obstructing the protein's openings. Sci Rep 2024; 14:24899. [PMID: 39438505 PMCID: PMC11496655 DOI: 10.1038/s41598-024-73037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Graphene quantum dots (GQDs) have garnered significant attention across numerous fields due to their ultrasmall size and exceptional properties. However, their extensive applications may lead to environmental exposure and subsequent uptake by humans. Yet, conflicting reports exist regarding the potential toxicity of GQDs based on experimental investigations. Therefore, a comprehensive understanding of GQD biosafety requires further microscopic and molecular-level investigations. In this study, we employed molecular dynamics (MD) simulations to explore the interactions between GQDs and graphene oxide quantum dots (GOQDs) with a protein model, the human intestinal fatty acid binding protein (HIFABP), that plays a crucial role in mediating the carrier of fatty acids in the intestine. Our MD simulation results reveal that GQDs can be adsorbed on the opening of HIFABP, which serves as an entrance for the fatty acid molecules into the protein's interior cavity. This adsorption has the potential to obstruct the opening of HIFABP, leading to the loss of its normal biological function and ultimately resulting in toxicity. The adsorption of GQDs is driven by a combination of van der Waals (vdW), π-π stacking, cation-π, and hydrophobic interactions. Similarly, GOQDs also exhibit the ability to block the opening of HIFABP, thereby potentially causing toxicity. The blockage of GOQDs to HIFABP is guided by a combination of vdW, Coulomb, π-π stacking, and hydrophobic interactions. These findings not only highlight the potential harmful effects of GQDs on HIFABP but also elucidate the underlying molecular mechanism, which provides crucial insights into GQD toxicology.
Collapse
Affiliation(s)
- Yanbo Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, 72570, Puebla, Mexico
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
3
|
Kamboukos A, Williams-Noonan BJ, Charchar P, Yarovsky I, Todorova N. Graphitic nanoflakes modulate the structure and binding of human amylin. NANOSCALE 2024; 16:16870-16886. [PMID: 39219407 DOI: 10.1039/d4nr01315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human amylin is an inherently disordered protein whose ability to form amyloid fibrils is linked to the onset of type II diabetes. Graphitic nanomaterials have potential in managing amyloid diseases as they can disrupt protein aggregation processes in biological settings, but optimising these materials to prevent fibrillation is challenging. Here, we employ bias-exchange molecular dynamics simulations to systematically study the structure and adsorption preferences of amylin on graphitic nanoflakes that vary in their physical dimensions and surface functionalisation. Our findings reveal that nanoflake size and surface oxidation both influence the structure and adsorption preferences of amylin. The purely hydrophobic substrate of pristine graphene (PG) nanoflakes encourages non-specific protein adsorption, leading to unrestricted lateral mobility once amylin adheres to the surface. Particularly on larger PG nanoflakes, this induces structural changes in amylin that may promote fibril formation, such as the loss of native helical content and an increase in β-sheet character. In contrast, oxidised graphene nanoflakes form hydrogen bonds between surface oxygen sites and amylin, and as such restricting protein mobility. Reduced graphene oxide (rGO) flakes, featuring lower amounts of surface oxidation, are amphiphilic and exhibit substantial regions of bare carbon which promote protein binding and reduced conformational flexibility, leading to conservation of the native structure of amylin. In comparison, graphene oxide (GO) nanoflakes, which are predominantly hydrophilic and have a high degree of surface oxidation, facilitate considerable protein structural variability, resulting in substantial contact area between the protein and GO, and subsequent protein unfolding. Our results indicate that tailoring the size, oxygen concentration and surface patterning of graphitic nanoflakes can lead to specific and robust protein binding, ultimately influencing the likelihood of fibril formation. These atomistic insights provide key design considerations for the development of graphitic nanoflakes that can modulate protein aggregation by sequestering protein monomers in the biological environment and inhibit conformational changes linked to amyloid fibril formation.
Collapse
Affiliation(s)
- Alexa Kamboukos
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Billy J Williams-Noonan
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
4
|
Roy S, Aastha, Deo KA, Dey K, Gaharwar AK, Jaiswal A. Nanobio Interface Between Proteins and 2D Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35753-35787. [PMID: 37487195 PMCID: PMC10866197 DOI: 10.1021/acsami.3c04582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Two-dimensional (2D) nanomaterials have significantly contributed to recent advances in material sciences and nanotechnology, owing to their layered structure. Despite their potential as multifunctional theranostic agents, the biomedical translation of these materials is limited due to a lack of knowledge and control over their interaction with complex biological systems. In a biological microenvironment, the high surface energy of nanomaterials leads to diverse interactions with biological moieties such as proteins, which play a crucial role in unique physiological processes. These interactions can alter the size, surface charge, shape, and interfacial composition of the nanomaterial, ultimately affecting its biological activity and identity. This review critically discusses the possible interactions between proteins and 2D nanomaterials, along with a wide spectrum of analytical techniques that can be used to study and characterize such interplay. A better understanding of these interactions would help circumvent potential risks and provide guidance toward the safer design of 2D nanomaterials as a platform technology for various biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aastha
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Kaivalya A. Deo
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kashmira Dey
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Amit Jaiswal
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
5
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
6
|
Liao Z, Ma X, Kai JJ, Fan J. Molecular mechanisms of integrin αvβ8 activation regulated by graphene, boron nitride and black phosphorus nanosheets. Colloids Surf B Biointerfaces 2023; 222:113139. [PMID: 36640538 DOI: 10.1016/j.colsurfb.2023.113139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Integrin αvβ8 is a heterodimeric transmembrane protein on macrophages. Nanosheets can activate the integrin and elicit immune responses, exhibiting adverse immunotoxicity. Understanding the mechanism of integrin activation regulated by nanosheets is crucial for safe and effective use of nanosheets in biomedical applications. Herein, we performed all-atom molecular dynamics simulations to clarify the interactions between integrin αvβ8 in the cell membrane and three types of nanosheets, graphene (GRA), hexagonal boron nitride (BN), and black phosphorus (BP). We observed that BP could adsorb the intracellular end of αv monomer and thus break the inner membrane clasp, an important hydrophobic cluster for maintaining the inactive state of integrin. The association between αv and β8 subunit is weakened, promoting the integrin activation. By contrast, GRA and BN exert little influence on the association state of the integrin. Interestingly, the puckered structure of BP affects the integrin activation, where BP with the armchair direction perpendicular to the membrane plane cannot unpack the integrin. Moreover, the perturbation effect of nanosheets on the membrane was also evaluated. BP shows a milder effect on membrane structures and lipid properties than GRA and BN. This work unravels the molecular basis on the activation of integrin mediated by three nanosheets, and suggests the toxicity and therapeutic effect of well-established nanomaterials in the immune system.
Collapse
Affiliation(s)
- Zhenyu Liao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Ji-Jung Kai
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; Centre for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; Centre for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|