1
|
Sangeeta, Mehra K, Sarkar A, Tomar R. Exploring Biophysical and Chemoinformatics Approaches for Interactions of Ionic Liquids With Hemoglobin, DNA, BSA, and HSA. Chem Biodivers 2025:e202402781. [PMID: 39869109 DOI: 10.1002/cbdv.202402781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
This review article provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly hemoglobin (Hb), bovine serum albumin (BSA), human serum albumin (HSA), and calf thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques. The article highlighted various experimental and computational methodologies to explore the interactions between ILs and biomacromolecules. It offers an in-depth analysis of the techniques employed to decode the intricate nature of these molecular associations and the influence of ILs along with their structural characteristics on the conformational stability, activity, and functionality of biomacromolecules. This foundational understanding is essential for advancing research and developing strategies that exploit the distinctive properties of ILs to foster innovative and sustainable applications within the biomedical field.
Collapse
Affiliation(s)
- Sangeeta
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, Delhi, India
| | - Komal Mehra
- Department of Applied Chemistry, Bhagwan Parshuram Institute of Technology, GGSIPU, Rohini, Delhi, India
| | - Anjana Sarkar
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, Delhi, India
| | - Ravi Tomar
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| |
Collapse
|
2
|
Russo S, Bodo E. Solvation of Model Biomolecules in Choline-Aminoate Ionic Liquids: A Computational Simulation Using Polarizable Force Fields. Molecules 2024; 29:1524. [PMID: 38611804 PMCID: PMC11013605 DOI: 10.3390/molecules29071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
One can foresee a very near future where ionic liquids will be used in applications such as biomolecular chemistry or medicine. The molecular details of their interaction with biological matter, however, are difficult to investigate due to the vast number of combinations of both the biological systems and the variety of possible liquids. Here, we provide a computational study aimed at understanding the interaction of a special class of biocompatible ionic liquids (choline-aminoate) with two model biological systems: an oligopeptide and an oligonucleotide. We employed molecular dynamics with a polarizable force field. Our results are in line with previous experimental and computational evidence on analogous systems and show how these biocompatible ionic liquids, in their pure form, act as gentle solvents for protein structures while simultaneously destabilizing DNA structure.
Collapse
Affiliation(s)
| | - Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
3
|
Mahapatra A, Chowdhury UD, Barik S, Parida S, Bhargava BL, Sarkar M. Deciphering the Role of Anions of Ionic Liquids in Modulating the Structure and Stability of ct-DNA in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17318-17332. [PMID: 37995326 DOI: 10.1021/acs.langmuir.3c02459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Stabilizing biomolecules under ambient conditions can be extremely beneficial for various biological applications. In this context, the utilization of ionic liquids (ILs) in enhancing the stability and preservation of nucleic acids in aqueous solutions is found to be promising. While the role of the cationic moiety of ILs in the said event has been thoroughly explored, the importance of the anionic moiety in ILs, if any, is rather poorly understood. Herein, we examine the function of anions of ILs in nucleic acid stabilization by examining the stability and structure of calf thymus-DNA (ct-DNA) in the presence of various ILs composed of a common 1-ethyl-3-methylimidazolium cations (Emim+) and different anions, which includes Cl-, Br-, NO 3 - , Ac - , HS O 4 - and B F 4 - by employing various spectroscopic techniques as well as Molecular Dynamics (MD) simulation studies. Analysis of our data suggests that the chemical nature of anions including polarity, basicity, and hydrophilicity become an important factor in the overall DNA-IL interaction event. At lower concentrations, the interplay of intermolecular interaction between the IL anions with their respective cations and the solvent molecules becomes a very crucial factor in inducing their stabilizing effect on ct-DNA. However, at higher concentrations of ILs, the ct-DNA stabilization is additionally governed by specific-ion effect. MD simulation studies have also provided valuable insights into molecular-level understanding of the DNA-IL interaction event. Overall, the present study clearly demonstrated that along with the cationic moiety of ILs, the anions of ILs can play a significant role in deciding the stability of duplex DNA in aqueous solution. The findings of this study are expected to enhance our knowledge on understanding of IL-DNA interactions in a better manner and will be helpful in designing optimized IL systems for nucleic acid based applications.
Collapse
Affiliation(s)
- Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Jatani, Khurda, Bhubaneswar 752050, Odisha, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Unmesh Dutta Chowdhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Jatani, Khurda, Bhubaneswar 752050, Odisha, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Jatani, Khurda, Bhubaneswar 752050, Odisha, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Subhakanta Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Jatani, Khurda, Bhubaneswar 752050, Odisha, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Jatani, Khurda, Bhubaneswar 752050, Odisha, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Jatani, Khurda, Bhubaneswar 752050, Odisha, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| |
Collapse
|