1
|
Moretto E, Kobus M, Maison W. Interaction of Grafted Polymeric N-oxides with Charged Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11136-11146. [PMID: 40275485 PMCID: PMC12060641 DOI: 10.1021/acs.langmuir.5c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Grafted polymeric N-oxides have recently attracted interest for antifouling applications, drug delivery, wastewater purification, and electronic devices. Their function depends on the efficiency of the grafting process and the following postgrafting oxidation step. These two parameters govern the solvent-accessible charge density on the surface, an important parameter, which is notoriously hard to determine. In this study, a novel colorimetric quantitative assay for polymeric N-oxides was developed. It allows the determination of the surface charge density of grafted polymeric N-oxides. The method is based on the adsorption of acid fuchsin (AF) to grafted N-oxides through reversible electrostatic interactions between the positively charged nitrogen atoms of the N-oxide functionality and the sulfonate groups of the dye. The process depends thus on the pH-switchable properties of polymeric N-oxides. Adsorption was achieved at a pH value of 3, where N-oxides are almost fully protonated (typical pKa 4-5). AF was desorbed from the surface at pH 7 and quantified via visible adsorption spectroscopy (UV-vis) at 556 nm to determine the amount of surface-grafted functional groups. Charge densities of diverse N-oxides grafted by free radical polymerization from polyethylene (PE) were determined to be in the range 1-3 × 1015 N+-O-/cm2. Notably, N-oxides can form covalent bonds with electron-deficient triarylmethane dyes like AF. This nucleophilic reactivity of N-oxides does not compromise the proposed assay, but it may be of relevance for dye adsorption and desorption in wastewater purification.
Collapse
Affiliation(s)
- Erica Moretto
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| | - Michelle Kobus
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| | - Wolfgang Maison
- Department of Chemistry, Universität Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| |
Collapse
|
2
|
Wang Z, Yuan S, Wang D, Zhang N, Shen Y, Wang Z. N-Oxide Zwitterionic-Based Antifouling Loose Nanofiltration Membranes with Superior Water Permeance and Effective Dye/Salt Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5856-5865. [PMID: 40068006 DOI: 10.1021/acs.est.5c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Loose nanofiltration (LNF) membranes with high permeance and separation selectivity are highly desired for the effective separation of organic dyes and inorganic salts. Herein, a novel polyamide LNF membrane was fabricated using zwitterionic amine reactant trimethylamine N-oxide-based polyethylenimine (TPEI) and trimesoyl chloride (TMC) via interfacial polymerization (IP). A thin, loose, and smooth polyamide layer was formed due to the low diffusion rate and modified chemical structure of TPEI. The optimized membrane (NF-TPEI) exhibited an extremely high water permeance of 213.0 L m-2 h-1 bar-1, accompanied by outstanding dye rejections of Congo Red (99.8%), Coomassie Brilliant Blue R250 (99.5%), and Evans Blue (99.9%). Meanwhile, the membrane possessed low rejections (<7.0%) of inorganic salts (Na2SO4, MgSO4, MgCl2, and NaCl). Additionally, the NF-TPEI membrane exhibited outstanding antifouling performance, achieving a superior recovery ratio of 96.0 and 98.1% after the filtration of humic acid and sodium alginate solution, respectively. Compared to the commercial NF270 membrane, the NF-TPEI membrane exhibited significantly improved separation performance in terms of permeance and fouling resistance, which provided more possibilities for high-performance LNF membranes toward the treatment of wastewater with organic contaminants.
Collapse
Affiliation(s)
- Ziming Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yun Shen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P.R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
3
|
Kao TY, Gong YC, Huang CH, Wu YK, Luo SC. Chelation-Induced Zwitterion-like Antifouling Behavior on Anionic Poly(3,4-ethylenedioxythiophene) Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22417-22423. [PMID: 39383339 PMCID: PMC11500425 DOI: 10.1021/acs.langmuir.4c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Antifouling properties are crucial for enhancing the longevity and functionality of biomedical implants, drug delivery systems, and biosensors. Zwitterionic polymers are renowned for their exceptional surface hydration and charge neutrality, which effectively resist biomolecular adsorption and protein attachment. We propose an innovative approach to develop zwitterion-like antifouling surfaces by chelating divalent cations with anionic poly(3,4-ethylenedioxythiophene) (PEDOT) films, specifically PEDOT-PO4 and PEDOT-COOH. The chelation behavior of these films was systematically evaluated using Na+, Mg2+, and Ca2+ ions. Divalent ions, particularly Ca2+ and Mg2+, exhibit a strong affinity for the anionic groups, leading to significant antifouling properties. These modified surfaces effectively repelled both negatively charged bovine serum albumin (BSA) and positively charged lysozyme (LYZ) proteins across various pH environments. This study offers valuable insights into the antifouling characteristics of charged surfaces, enhancing our understanding of how ion-mediated surface modifications influence protein adsorption and interactions.
Collapse
Affiliation(s)
- Tzu-Yu Kao
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ya-Chen Gong
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Cheng-Hsun Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yen-Ku Wu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Shyh-Chyang Luo
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Kobus M, Friedrich T, Zorn E, Burmeister N, Maison W. Medicinal Chemistry of Drugs with N-Oxide Functionalities. J Med Chem 2024; 67:5168-5184. [PMID: 38549449 PMCID: PMC11017254 DOI: 10.1021/acs.jmedchem.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Molecules with N-oxide functionalities are omnipresent in nature and play an important role in Medicinal Chemistry. They are synthetic or biosynthetic intermediates, prodrugs, drugs, or polymers for applications in drug development and surface engineering. Typically, the N-oxide group is critical for biomedical applications of these molecules. It may provide water solubility or decrease membrane permeability or immunogenicity. In other cases, the N-oxide has a special redox reactivity which is important for drug targeting and/or cytotoxicity. Many of the underlying mechanisms have only recently been discovered, and the number of applications of N-oxides in the healthcare field is rapidly growing. This Perspective article gives a short summary of the properties of N-oxides and their synthesis. It also provides a discussion of current applications of N-oxides in the biomedical field and explains the basic molecular mechanisms responsible for their biological activity.
Collapse
Affiliation(s)
- Michelle Kobus
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Timo Friedrich
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eilika Zorn
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Nils Burmeister
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Qian H, Xu G, Yang S, Ang EH, Chen Q, Lin C, Liao J, Shen J. Advancing Lithium-Magnesium Separation: Pioneering Swelling-Embedded Cation Exchange Membranes Based on Sulfonated Poly(ether ether ketone). ACS APPLIED MATERIALS & INTERFACES 2024; 16:18019-18029. [PMID: 38546167 DOI: 10.1021/acsami.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With the continuous advancement of electrodialysis (ED) technology, there arises a demand for improved monovalent cation exchange membranes (CEMs). However, limitations in membrane materials and structures have resulted in the low selectivity of monovalent CEMs, posing challenges in the separation of Li+ and Mg2+. In this investigation, a designed CEM with a swelling-embedded structure was created by integrating a polyelectrolyte containing N-oxide Zwitterion into a sulfonated poly(ether ether ketone) (SPEEK) membrane, leveraging the notable solubility characteristic of SPEEK. The membranes were prepared by using N-oxide zwitterionic polyethylenimine (ZPEI) and 1,3,5-benzenetrlcarbonyl trichloride (TMC). The as-prepared membranes underwent systematic characterization and testing, evaluating their structural, physicochemical, electrochemical, and selective ED properties. During ED, the modified membranes demonstrated notable permeability selectivity for Li+ ions in binary (Li+/Mg2+) systems. Notably, at a constant current density of 2.5 mA cm-2, the modified membrane PEI-TMC/SPEEK exhibited significant permeability selectivity ( P Mg 2 + Li + = 5.63 ) in the Li+/Mg2+ system, while ZPEI-TMC/SPEEK outperformed, displaying remarkable permeability selectivity ( P Mg 2 + Li + = 12.43 ) in the Li+/Mg2+ system, surpassing commercial monovalent cation-selective membrane commercial monovalent cation-selective membrane (CIMS). Furthermore, in the Li+/Mg2+ binary system, Li+ flux reached 9.78 × 10-9 mol cm-2 s-1 for ZPEI-TMC/SPEEK, while its Mg2+ flux only reached 2.7 × 10-9 mol cm-2 s-1, showing potential for lithium-magnesium separation. In addition, ZPEI-TMC/SPEEK was tested for performance and stability at high current densities. This work offers a straightforward preparation process and an innovative structural approach, presenting methodological insights for the advancement of lithium and magnesium separation techniques.
Collapse
Affiliation(s)
- Hao Qian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Geting Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shanshan Yang
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Edison Huixiang Ang
- Nature Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenfei Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Feng Z, Feng X, Lu X. Bioinspired N-Oxide-Based Zwitterionic Polymer Brushes for Robust Fouling-Resistant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7298-7308. [PMID: 37116217 DOI: 10.1021/acs.est.3c00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fouling-resistant surfaces are needed for various environmental applications. Inspired by superhydrophilic N-oxide-based osmolytes in saltwater fish, we demonstrate the use of a trimethylamine N-oxide (TMAO) analogue for constructing fouling-resistant surfaces. The readily synthesized N-oxide monomer of methacrylamide is grafted to filtration membrane surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP). Successful grafting of the amine N-oxide brush layer as confirmed by material characterization endows the surface with increased hydrophilicity, reduced charge, and decreased roughness. Notably, the introduction of the N-oxide layer does not compromise transport properties, i.e., water permeability and water-salt selectivity. Moreover, the modified membrane exhibits improved antifouling properties with a lower flux decline (32.1%) and greater fouling reversibility (18.55%) than the control sample (45.4% flux decline and 3.26% fouling reversibility). We further evaluate foulant-membrane interaction using surface plasmon resonance (SPR) to relate the reduced fouling tendency to the synergic effects of surface characteristic changes after amine N-oxide modification. Our results demonstrate the promise and potential of the N-oxide-based polymer brushes for the design of fouling resistance surfaces for a variety of emerging environmental applications.
Collapse
Affiliation(s)
- Zimou Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|