1
|
Candia-Lomeli M, Delgado-Cano B, Heitz M, Avalos-Ramirez A, Arriaga S. Greenhouse gases capture applying impregnated silica with ionic liquids, deep eutectic solvents, and natural deep eutectic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3212-3226. [PMID: 38683427 DOI: 10.1007/s11356-024-33485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The development of technologies to capture greenhouse gases (GHGs) like carbon dioxide (CO2) and nitrous oxide (N2O) is vital for climate change mitigation. Ionic liquids (ILs), deep eutectic solvents (DES), and natural deep eutectic solvents (NADES) are promising absorbents to abate GHGs emissions. However, their high viscosity limits the gas-liquid contact, as consequence of the mass transfer. To overcome this, their impregnation onto porous silica gel has been carried out, increasing the gas-liquid contact area. The present study analyzes the effect of size particle of silica gel impregnated with ILs, DES, and NADES over the CO2 and N2O capture at atmospheric conditions. The degree of impregnation of silica particles was determined by thermogravimetric analysis (TGA). The identification of functional groups present on the surface of silica, ILs, DES, and NADES was performed using Fourier-transform infrared spectroscopy (FTIR), and their crystalline structure was determined by X-ray diffraction (XRD). The partition coefficient of CO2 and N2O between gas and ILs, DES, and NADES was determined by a static headspace method. Results show that the degree of solvent impregnation on silica gel ranged from 36.8 to 43.0% w/w, the partition coefficient of CO2 in the impregnated silica varied from 0.005 to 0.067, and for N2O, from 0.005 to 0.032. This suggests that impregnated particles have a greater affinity for N2O compared to CO2. Using impregnated particles requires only 40% of the bulk solvent to achieve a similar GHG capture capacity compared to using bulk solvents.
Collapse
Affiliation(s)
- Mariana Candia-Lomeli
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055. Col. Lomas 4a. Sección, CP. 78216, San Luis Potosí, S.L.P, Mexico
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Beatriz Delgado-Cano
- Centre National en Électrochimie Et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, QC, G9N 6V8, Canada
| | - Michelle Heitz
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Antonio Avalos-Ramirez
- Centre National en Électrochimie Et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, QC, G9N 6V8, Canada
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Sonia Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055. Col. Lomas 4a. Sección, CP. 78216, San Luis Potosí, S.L.P, Mexico.
| |
Collapse
|
2
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Wang J, Wang R. Treatment and Resource Utilization of Gaseous Pollutants in Functionalized Ionic Liquids. Molecules 2024; 29:3279. [PMID: 39064858 PMCID: PMC11279358 DOI: 10.3390/molecules29143279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
With the rapid development of science, technology, and the economy of human society, the emission problem of gas pollutants is becoming more and more serious, which brings great pressure to the global ecological environment. At the same time, the natural resources that can be exploited and utilized on Earth are also showing a trend of exhaustion. As an innovative and environmentally friendly material, functionalized ionic liquids (FILs) have shown great application potential in the capture, separation, and resource utilization of gaseous pollutants. In this paper, the synthesis and characterization methods of FILs are introduced, and the application of FILs in the treatment and recycling of gaseous pollutants is discussed. The future development of FILs in this field is also anticipated, which will provide new ideas and methods for the treatment and recycling of gaseous pollutants and promote the process of environmental protection and sustainable development.
Collapse
Affiliation(s)
- Jiayu Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
4
|
Liao Q, Yuan Y, Cao J. One-step synthesis of hydroxyl-functionalized ionic hyper-cross-linked polymers with high surface areas for efficient CO 2 capture and fixation. J Colloid Interface Sci 2024; 665:958-968. [PMID: 38569312 DOI: 10.1016/j.jcis.2024.03.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Ionic liquid-based functional materials have attracted significant attention for their distinctive structure in the field of CO2 capture and conversion. In this work, a series of hydroxyl-functionalized ionic hyper-cross-linked polymers are prepared through a one-step Friedel-Crafts reaction involving hypoxanthine (HX) and benzimidazole (BI) as the monomers, along with various halohydrocarbon crosslinking agents. These polymers demonstrate a high specific surface area (558-1480 m2·g-1), well-developed microporous structure, and unique ion sites, enabling them to exhibit remarkable and reversible CO2 adsorption properties. Particularly noteworthy is their CO2 adsorption capacity, which surpasses that of similar ionic polymers documented in the literature, reaching 157.5 mg·g-1 at 273 K and 1 bar. Additionally, these polymers function as recyclable catalysts in the cycloaddition reaction of CO2 and epoxides, enabling the conversion of CO2 into cyclic carbonates with yields of up to 99 % even without a co-catalyst. Mechanism investigation reveals that the introduction of hydroxyl groups in the polymer is the key to improving catalytic activity through a synergistic catalytic effect. This research provides a novel concept for designing ionic functional materials with capabilities in both CO2 adsorption and catalytic activity.
Collapse
Affiliation(s)
- Quanlan Liao
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuxin Yuan
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jianxin Cao
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
5
|
Ye N, Shen Y, Chen Y, Cao J, Lu X, Ji X. Enhanced CO 2 Capture through SAPO-34 Impregnated with Ionic Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9097-9107. [PMID: 38640355 PMCID: PMC11064229 DOI: 10.1021/acs.langmuir.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
The concurrent utilization of an adsorbent and absorbent for carbon dioxide (CO2) adsorption with synergistic effects presents a promising technique for CO2 capture. Here, 1-butyl-3-methylimidazole acetate ([Bmim][Ac]), with a high affinity for CO2, and the molecular sieve SAPO-34 were selected. The impregnation method was used to composite the hybrid samples of [Bmim][Ac]/SAPO-34, and the pore structure and surface property of prepared samples were characterized. The quantity and kinetics of the sorbed CO2 for loaded samples were measured using thermogravimetric analysis. The study revealed that SAPO-34 could retain its pristine structure after [Bmim][Ac] loading. The CO2 uptake of the loaded sample was 1.879 mmol g-1 at 303 K and 1 bar, exhibiting a 20.6% rise compared to that of the pristine SAPO-34 recording 1.558 mmol g-1. The CO2 uptake kinetics of the loaded samples were also accelerated, and the apparent mass transfer resistance for CO2 sorption was significantly reduced by 11.2% compared with that of the pure [Bmim][Ac]. The differential scanning calorimetry method revealed that the loaded sample had a lower CO2 desorption heat than that of the pure [Bmim][Ac], and the CO2 desorption heat of the loaded samples was between 30.6 and 40.8 kJ mol-1. The samples exhibited good cyclic stability. This material displays great potential for CO2 capture applications, facilitating the reduction of greenhouse gas emissions.
Collapse
Affiliation(s)
- Nannan Ye
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yusi Shen
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yifeng Chen
- CAF,
Key and Open Laboratory of Forest Chemical Engineering, Key Laboratory
of Biomass Energy and Material, SFA, National Engineering Laboratory
for Biomass Chemical Utilization, Institute
of Chemical Industry of Forest Products, Nanjing 210042, P. R. China
| | - Jian Cao
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Xiaohua Lu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Suzhou
Laboratory, Suzhou 215100, P. R. China
| | - Xiaoyan Ji
- Division
of Energy Science/Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden
| |
Collapse
|