1
|
Li Z, Qiu L, Song Z, Gong K, Gan X, Peng C, Qian X. Understanding the seasonal variation of the microplastics occurrence and source in the water source: upstream of the Huangpu River in Shanghai as an example. ENVIRONMENTAL RESEARCH 2025; 277:121616. [PMID: 40246264 DOI: 10.1016/j.envres.2025.121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The potential seasonal variations in the features and sources of microplastics (MPs) in reservoirs and the connected upstream rivers remain poorly understood. A field study of MPs in Huangpu River upper reaches indicated that surface water MP abundance was 4.75 ± 0.63 (Taipu River), 5.8 ± 0.9 (Lanlugang River), and 4.3 ± 0.9 items/L (Jinze Reservoir) during wet season, increasing to 12.9 ± 1.4, 18 ± 1.7, and 8.3 ± 1.7 items/L, respectively in drought season, whereas in sediment was 6704 ± 421, 3932 ± 200, and 4737 ± 408 items/kg during wet season, which decreased to 4045 ± 523, 4017 ± 430, and 2229 ± 434 items/kg during drought period. The MPs mainly comprised PE, PP fragments/fibers, and PET fibers. The significant seasonal variations in MP abundance were detected only within the surface water and sediments of rivers. Notably, significant seasonal variations in the features of MPs were observed in the surface water of Jinze Reservoir and the surface water or the sediments of rivers. During the wet season, multiple potential sources of MPs were identified in the reservoir, whereas the Taipu River served as the primary source during drought periods. Moderate or lower MP abundance was observed within the surface water of upper reaches of the Huangpu River, while higher levels were found in the sediments. The findings suggest Jinze Reservoir's MP control requires seasonal adjustments. While upper Huangpu River surface water shows lower risk with good safety, MP migration to sediments elevates risks, necessitating prioritized sediment management.
Collapse
Affiliation(s)
- Zhengwen Li
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Linlin Qiu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhaofeng Song
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Kailin Gong
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinya Gan
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xiaoyong Qian
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
2
|
AlQasas N, Johnson D. Combined Effects of Surface Roughness, Solubility Parameters, and Hydrophilicity on Biofouling of Reverse Osmosis Membranes. MEMBRANES 2024; 14:235. [PMID: 39590621 PMCID: PMC11596770 DOI: 10.3390/membranes14110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024]
Abstract
The fouling of protein on the surface of reverse osmosis (RO) membranes is a surface phenomenon strongly dependent on the physical and chemical characteristics of both the membrane surface and the foulant molecule. Much of the focus on fouling mitigation is on the synthesis of more hydrophilic membrane materials. However, hydrophilicity is only one of several factors affecting foulant attachment. A more systematic and rationalized methodology is needed to screen the membrane materials for the synthesis of fouling-resistant materials, which will ensure the prevention of the accumulation of foulants on the membrane surfaces, avoiding the trial and error methodology used in most membrane synthesis in the literature. If a clear correlation is found between various membrane surface properties, in combination or singly, and the amount of fouling, this will facilitate the establishment of a systematic strategy of screening materials and enhance the selection of membrane materials and therefore will reflect on the efficiency of the membrane process. In this work, eight commercial reverse osmosis membranes were tested for bovine serum albumin (BSA) protein fouling. The work here focused on three surface membrane properties: the surface roughness, the water contact angle (hydrophilicity), and finally the Hansen solubility parameter (HSP) distance between the foulant understudy (BSA protein) and the membrane surface. The HSP distance was investigated as it represented the affinities of materials to each other, and therefore, it was believed to have an important contribution to the tendency of foulant to stick to the surface of the membrane. The results showed that the surface roughness and the HSP distance contributed to membrane fouling more than the hydrophilicity. We recommend taking into account the HSP distance between the membrane material and foulants when selecting membrane materials.
Collapse
Affiliation(s)
| | - Daniel Johnson
- Water Research Center (WRC), Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
3
|
Alnumani A, Abutaleb A, Park B, Mubashir M. Recent advancement on water filtration membranes: Navigating biofouling challenges. ENVIRONMENTAL RESEARCH 2024; 251:118615. [PMID: 38437904 DOI: 10.1016/j.envres.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This study investigates the field of antifouling membranes for water filtration and desalination applications, specifically focusing on two-dimensional materials. The study examines the importance of these membranes in the context of climate change and its effects on coastal ecosystems. The occurrence of biofouling in seawater desalination membranes is closely connected to intricate processes influenced by factors such as water quality, microbial communities, hydrodynamics, and membrane properties. Microorganism adhesion initiates the process, which then advances into irreversible attachment and the creation of biofilm. Detached pieces contribute to the perpetuation of fouling. Biofouling is caused by a variety of biomaterials and organics, including bacteria, extracellular polymeric substances (EPS), proteins, and humic compounds. Innovative methods such as surface alterations using two-dimensional materials like graphene and graphene oxide, as well as the use of biofouling-resistant materials, provide promising possibilities. These materials have antifouling characteristics, making them environmentally beneficial options that reduce the need for chemical cleaning. Their application improves the water treatment process by preventing fouling and enhancing membrane performance. Real-world research applications can enhance and optimize these tactics to effectively reduce biofouling in seawater desalination systems, hence improving efficiency and sustainability. This is particularly important in light of climate change and its impact on coastal ecosystems. The findings obtained from the literature review emphasise the utmost significance of tackling biofouling in the face of a changing environment, particularly with regard to microorganisms. Important factors to consider are the selection of coating materials, the implementation of environmentally friendly cleaning solutions made from natural chemicals, and the improvement of pretreatment systems. Green cleaning agents are important eco-friendly alternatives to typical biocides, as they possess antibacterial, antifungal, and antifouling capabilities. Given the existence of climate change, these observations serve as a basis for promoting environmentally friendly methods in water treatment technology.
Collapse
Affiliation(s)
- Ammar Alnumani
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Abdulrahman Abutaleb
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Byungsung Park
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| | - Muhammad Mubashir
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| |
Collapse
|
4
|
Khalili H, Monti S, Pesquet E, Jaworski A, Lombardo S, Mathew AP. Nanocellulose-Bovine Serum Albumin Interactions in an Aqueous Medium: Investigations Using In Situ Nanocolloidal Probe Microscopy and Reactive Molecular Dynamics Simulations. Biomacromolecules 2024; 25:3703-3714. [PMID: 38806282 PMCID: PMC11170956 DOI: 10.1021/acs.biomac.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
As a versatile nanomaterial derived from renewable sources, nanocellulose has attracted considerable attention for its potential applications in various sectors, especially those focused on water treatment and remediation. Here, we have combined atomic force microscopy (AFM) and reactive molecular dynamics (RMD) simulations to characterize the interactions between cellulose nanofibers modified with carboxylate or phosphate groups and the protein foulant model bovine serum albumin (BSA) at pH 3.92, which is close to the isoelectric point of BSA. Colloidal probes were prepared by modification of the AFM probes with the nanofibers, and the nanofiber coating on the AFM tip was for the first time confirmed through fluorescence labeling and confocal optical sectioning. We have found that the wet-state normalized adhesion force is approximately 17.87 ± 8.58 pN/nm for the carboxylated cellulose nanofibers (TOCNF) and about 11.70 ± 2.97 pN/nm for the phosphorylated ones (PCNF) at the studied pH. Moreover, the adsorbed protein partially unfolded at the cellulose interface due to the secondary structure's loss of intramolecular hydrogen bonds. We demonstrate that nanocellulose colloidal probes can be used as a sensitive tool to reveal interactions with BSA at nano and molecular scales and under in situ conditions. RMD simulations helped to gain a molecular- and atomistic-level understanding of the differences between these findings. In the case of PCNF, partially solvated metal ions, preferentially bound to the phosphates, reduced the direct protein-cellulose connections. This understanding can lead to significant advancements in the development of cellulose-based antifouling surfaces and provide crucial insights for expanding the pH range of use and suggesting appropriate recalibrations.
Collapse
Affiliation(s)
- Houssine Khalili
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic
Compounds, via Moruzzi
1, Pisa 56124, Italy
| | - Edouard Pesquet
- Department
of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
| | - Aleksander Jaworski
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Salvatore Lombardo
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Aji P Mathew
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
5
|
Zhang T, Wang Q, Yang Y, Hou L, Zheng W, Wu Z, Wang Z. Revealing the contradiction between DLVO/XDLVO theory and membrane fouling propensity for oil-in-water emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133594. [PMID: 38290334 DOI: 10.1016/j.jhazmat.2024.133594] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Oil fouling is the crucial issue for the separation of oil-in-water emulsion by membrane technology. The latest research found that the membrane fouling rate was opposite to the widely used theoretical prediction by Derjaguin-Landau-Verwey-Overbeek (DLVO) or extended DLVO (XDLVO) theory. To interpret the contradiction, the molecular dynamics was adopted to explore the molecular behavior of oil and emulsifier (Tween 80) at membrane interface with the assistance of DLVO/XDLVO theory and membrane fouling models. The decreased flux attenuation and fitting of fouling models proved that the existence of Tween 80 effectively alleviated membrane fouling. Conversely, DLVO/XDLVO theory predicted that the membrane fouling should be exacerbated with the increase of Tween 80 concentration in O/W emulsion. This contradiction originated from the different interaction energy between oil/Tween 80 molecules and polyether sulfone (PES) membrane. The favorable free energy of Tween 80 was resulted from the sulfuryl groups in PES and hydrogen bonds (O-H…O) formation further strengthened the interaction. Therefore, Tween 80 could preferentially adsorb on membrane surface and form an isolation layer by demulsification and steric hindrance and resist the aggregation of oil, which effectively alleviated membrane fouling. This study provided a new insight in the interpretation of interaction in O/W emulsion.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yan Yang
- China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Linxi Hou
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjia Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Ji S, Ran R, Esfahani IC, Sun H, Wan KT. Quantification of Particle Filtration Using a Quartz Crystal Microbalance Embedded in a Microfluidic Channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14223-14230. [PMID: 37753720 PMCID: PMC10620986 DOI: 10.1021/acs.langmuir.3c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Indexed: 09/28/2023]
Abstract
To quantify colloidal filtration, a quartz crystal microbalance (QCM) with a silicon dioxide surface is embedded on the inner surface of a microfluidic channel to monitor the real-time particle deposition. Potassium chloride solution with micrometer-size polystyrene particles simulating bacterial strains flows down the channel. In the presence of intrinsic Derjaguin-Landau-Verwey-Overbeek (DLVO) intersurface forces, particles are trapped by the quartz surfaces, and the increased mass shifts the QCM resonance frequency. The method provides an alternative way to measure filtration efficiency in an optically opaque channel and its dependence on the ionic concentration.
Collapse
Affiliation(s)
- Siqi Ji
- Mechanical and Industrial
Engineering, Northeastern University, Boston, Massachusetts 02115-5005, United
States
| | - Ran Ran
- Mechanical and Industrial
Engineering, Northeastern University, Boston, Massachusetts 02115-5005, United
States
| | | | - Hongwei Sun
- Mechanical and Industrial
Engineering, Northeastern University, Boston, Massachusetts 02115-5005, United
States
| | - Kai-tak Wan
- Mechanical and Industrial
Engineering, Northeastern University, Boston, Massachusetts 02115-5005, United
States
| |
Collapse
|