1
|
Liu J, Li J, Huang Y, Li T, Xu C, Tao Z, Ji W, Huang X. Liquid-to-gel transitions of phase-separated coacervate microdroplets enabled by endogenous enzymatic catalysis. J Colloid Interface Sci 2025; 692:137486. [PMID: 40184654 DOI: 10.1016/j.jcis.2025.137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) play a crucial role in organizing biochemical processes within living cells. The phase transition of these condensates from a functional liquid-like state to a pathological gel-like or solid-like state is believed to be linked to cellular dysfunction and various diseases. Here, we present a biomimetic model to demonstrate that endogenous enzyme-catalyzed crosslinking within condensate-mimicked coacervate microdroplets can promote a liquid-to-gel phase transition. We identify the transformation in physical characteristics of the densely packed microdroplets including reduced internal mobility, increased storage modulus, selective blocking of large nanoparticles, and enhanced salt resistance. The reversible dynamics of gel-like microdroplets mediated by ionic strength exhibited a limited release and recapture of sequestered positively charged guest molecules. Furthermore, we validate that the phase transition contributes to a restricted biochemical process through an enzymatic cascade. Overall, this work represents an adaptive in vitro platform for exploring the phase transitions associated with the physiological functions of biomolecular condensates and offers chemical insights and perspectives for investigating potential mechanisms involved in phase transitions.
Collapse
Affiliation(s)
- Jian Liu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Junbo Li
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China.
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Tong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Cheng Xu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyu Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Wei Ji
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
2
|
Fujii Y, Kawamura A, Morimoto N, Miyata T. Temperature-Responsive Zwitterionic Polymers That Undergo UCST-Type Liquid-Liquid Phase Separation under Physiological Ionic Strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7732-7740. [PMID: 40066891 DOI: 10.1021/acs.langmuir.5c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Associative phase separation (complex coacervation) in liquid-liquid phase separation (LLPS) involves the separation of multiple substances into concentrated and dilute phases by electrostatic interactions. Simple phase separation (simple coacervation) occurs when the hydrophilicity and hydrophobicity of a single molecule change dramatically in response to a specific stimulus. Simple coacervation arises from the lower critical solution temperature (LCST)- and upper critical solution temperature (UCST)-type phase separations in aqueous media containing temperature-responsive polymers. LCST- and UCST-type LLPSs induce droplet formation at temperatures above the LCST and below the UCST, respectively. Although there have been several studies on the UCST-type LLPS of temperature-responsive polymers in water, only a few temperature-responsive polymers that exhibit UCST-type LLPS in aqueous media with physiological ionic strength have been reported. In this study, we synthesized temperature-responsive zwitterionic polymers, exhibiting UCST-type LLPS in physiological ionic strength, by copolymerizing two types of zwitterionic monomers─sulfabetaine (SaB) having ammonium and sulfate groups and sulfobetaine (SB) having ammonium and sulfonate groups─in aqueous media with various ionic strengths. The resulting zwitterionic copolymers, P(SaB-co-SB)s, exhibited a cloud point (CP) characterized by a transition from turbidity to transparency as the temperature increased in a buffer with physiological ionic strength. The CP of P(SaB-co-SB) shifted from lower to higher temperatures as the SaB content increased. Microscopic observation showed that P(SaB-co-SB) underwent UCST-type LLPS to form coacervate droplets even in a buffer solution with physiological ionic strength at temperatures lower than the CP; however, the coacervates dissolved above the CP, unlike general UCST-type temperature-responsive polymers. The CPs of the P(SaB-co-SB)s under physiological ionic strength varied with the SaB content and ionic strength of the copolymerization medium. UCST-type LLPSs were induced by strong dipole-dipole interactions between SaB units at physiological ionic strength.
Collapse
Affiliation(s)
- Yuto Fujii
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Akifumi Kawamura
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nobuyuki Morimoto
- Faculty of Materials for Energy, Shimane University, Nishikawatsu-cho 1060, Matsue, Shimane 690-8504, Japan
| | - Takashi Miyata
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
3
|
Chen H, Han Z, Wang S, Zhu M, Wang L, Lin Y, Wang X, Zhang Y, Wang W, Li M, Liu X, Mann S, Huang X. Droplet-supported liquid-liquid lateral phase separation as a step to floating protein heterostructures. Nat Commun 2025; 16:1897. [PMID: 39988593 PMCID: PMC11847946 DOI: 10.1038/s41467-025-57141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025] Open
Abstract
Liquid-liquid phase separation plays an important role in many natural and technological processes. Herein, we implement lateral microphase separation at the surface of oil micro-droplets suspended in water to prepare a range of discrete floating protein/polymer continuous two-dimensional (2D) heterostructures with variable interfacial domain structures and dynamics. We show that gel-like domains of bovine serum albumin (BSA) co-exist with fluid-like polyvinyl alcohol (PVA) regions at the oil droplet surface to produce floating heterostructures comprising a 2D phase-separated protein mesh or an array of discrete mobile protein rafts depending on the conditions employed. Enzymes are embedded in the discontinuous BSA domains to produce droplet-supported microphase-separated 2D reaction scaffolds that can be tuned for interfacial catalysis. Taken together, our work has general implications for the structural and functional augmentation of oil droplet interfaces and contributes to the surface engineering and functionality of droplet-based micro-reactors.
Collapse
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mei Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yide Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, China
| | - Mei Li
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Stephen Mann
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
4
|
Ning L, Li J, Xie Q, Hu J, Liu J, Xu C, Peng J, Chen C, Ji W. Plasmonic Coacervate as a Droplet-Based SERS Platform for Rapid Enrichment and Microanalysis of Hydrophobic Payloads. Anal Chem 2024; 96:18772-18780. [PMID: 39376158 DOI: 10.1021/acs.analchem.4c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A novel and simple coacervate microdroplet-based detection platform for the quantification of trace hydrophobic analytes is presented. Herein, taking advantage of the effective encapsulation and enrichment performance of the condensed coacervates, plasmonic metallic silver nanoparticles (AgNPs) and target hydrophobic analytes are simultaneously concentrated into a single microdroplet. The coencapsulation of AgNPs within coacervates promotes the formation of aggregates with a lot of "hot spots" for surface-enhanced Raman scattering (SERS) enhancement, facilitating the sensitive analysis of hydrophobic analytes by SERS technology. Such plasmonic coacervates are easily prepared and exhibit good reproducibility and signal uniformity. Optimized SERS performance by modulating the volume of encapsulated AgNPs enables quantitative determination of hydrophobic analytes of Nile Red, chlorpyrifos, benzo[e]pyrene, 20 and 50 nm polystyrene nanoplastics with low detection limits of 10-12 M, 10-9 M, 10-10 M, 0.05 ppb, and 0.5 ppb, and an approximately linear correlation between SERS signals and the analytical concentrations. This study opens a new convenient SERS platform for the ultrasensitive detection of hydrophobic hazardous substances, potentially becoming a rapid analysis method for extensive applications ranging from food safety to environment monitoring.
Collapse
Affiliation(s)
- Lichun Ning
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Junbo Li
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Qinhui Xie
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jianing Hu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jian Liu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Cheng Xu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jinsong Peng
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chunxia Chen
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Wei Ji
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Jia L, Gao S, Qiao Y. Optical Control over Liquid–Liquid Phase Separation. SMALL METHODS 2024; 8:e2301724. [PMID: 38530063 DOI: 10.1002/smtd.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
Collapse
Affiliation(s)
- Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Department of Orthopedic, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Yin C, Yu X, Chen C, Jin X, Tian L. Engineering the Spatial Distribution of Amphiphilic Molecule within Complex Coacervate Microdroplet via Modulating Charge Strength of Polyelectrolytes. SMALL METHODS 2024; 8:e2301760. [PMID: 38725320 DOI: 10.1002/smtd.202301760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Indexed: 10/24/2024]
Abstract
The investigation of the interplay between complex coacervate microdroplets and amphiphilic molecules offers valuable insights into the processes of prebiotic compartmentalization on the early Earth and presents a promising avenue for future advancements in biotechnology. Herein, the interaction between complex coacervate microdroplets and amphiphilic molecule (decanoic acid) is systematically investigated by varying charge strengths of negatively charged polyelectrolytes (DNA and PAA) and positively charged polyelectrolytes (PDDA and DEAE-Dextran). It is found that the interaction between amphiphilic molecule and complex coacervate microdroplets depended on the delicate balance between the interaction between decanoic acid and polyelectrolyte and the interaction between two polyelectrolytes. The different spatial distribution of amphiphilic molecule can result in differences in the internal microenvironment, which can further alter the uptake or exclusion of small molecules and biomolecules with different charges and polarities and functional biological process.
Collapse
Affiliation(s)
- Chengying Yin
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chong Chen
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Xiaofen Jin
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Liangfei Tian
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
7
|
Unarta IC, Cao S, Goonetilleke EC, Niu J, Gellman SH, Huang X. Submillisecond Atomistic Molecular Dynamics Simulations Reveal Hydrogen Bond-Driven Diffusion of a Guest Peptide in Protein-RNA Condensate. J Phys Chem B 2024; 128:2347-2359. [PMID: 38416758 PMCID: PMC11057999 DOI: 10.1021/acs.jpcb.3c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Liquid-liquid phase separation mediated by proteins and/or nucleic acids is believed to underlie the formation of many distinct condensed phases, or membraneless organelles, within living cells. These condensates have been proposed to orchestrate a variety of important processes. Despite recent advances, the interactions that regulate the dynamics of molecules within a condensate remain poorly understood. We performed accumulated 564.7 μs all-atom molecular dynamics (MD) simulations (system size ∼200k atoms) of model condensates formed by a scaffold RNA oligomer and a scaffold peptide rich in arginine (Arg). These model condensates contained one of three possible guest peptides: the scaffold peptide itself or a variant in which six Arg residues were replaced by lysine (Lys) or asymmetric dimethyl arginine (ADMA). We found that the Arg-rich peptide can form the largest number of hydrogen bonds and bind the strongest to the scaffold RNA in the condensate, relative to the Lys- and ADMA-rich peptides. Our MD simulations also showed that the Arg-rich peptide diffused more slowly in the condensate relative to the other two guest peptides, which is consistent with a recent fluorescence microscopy study. There was no significant increase in the number of cation-π interactions between the Arg-rich peptide and the scaffold RNA compared to the Lys-rich and ADMA-rich peptides. Our results indicate that hydrogen bonds between the peptides and the RNA backbone, rather than cation-π interactions, play a major role in regulating peptide diffusion in the condensate.
Collapse
Affiliation(s)
- Ilona C. Unarta
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Siqin Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Eshani C. Goonetilleke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuhui Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Green CM, Sementa D, Mathur D, Melinger JS, Deshpande P, Elbaum-Garfinkle S, Medintz IL, Ulijn RV, Díaz SA. Sequestration within peptide coacervates improves the fluorescence intensity, kinetics, and limits of detection of dye-based DNA biosensors. Commun Chem 2024; 7:49. [PMID: 38424154 PMCID: PMC10904739 DOI: 10.1038/s42004-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Peptide-based liquid-liquid phase separated domains, or coacervates, are a biomaterial gaining new interest due to their exciting potential in fields ranging from biosensing to drug delivery. In this study, we demonstrate that coacervates provide a simple and biocompatible medium to improve nucleic acid biosensors through the sequestration of both the biosensor and target strands within the coacervate, thereby increasing their local concentration. Using the well-established polyarginine (R9) - ATP coacervate system and an energy transfer-based DNA molecular beacon we observed three key improvements: i) a greater than 20-fold reduction of the limit of detection within coacervates when compared to control buffer solutions; ii) an increase in the kinetics, equilibrium was reached more than 4-times faster in coacervates; and iii) enhancement in the dye fluorescent quantum yields within the coacervates, resulting in greater signal-to-noise. The observed benefits translate into coacervates greatly improving bioassay functionality.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Deborah Sementa
- Nanoscience Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Joseph S Melinger
- Electronics Sciences and Technology Division Code 6816, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Priyasha Deshpande
- Structural Biology Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY, 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
- Department of Chemistry Hunter College, City University of New York, New York, NY, 10065, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA.
| |
Collapse
|