1
|
Zhu X, Zhang Y, Hanson BL, Wu DT, Wu N. Reconfigurable homochiral colloidal clusters assembled under orthogonally applied electric and magnetic fields. Proc Natl Acad Sci U S A 2025; 122:e2418006122. [PMID: 40168128 PMCID: PMC12002283 DOI: 10.1073/pnas.2418006122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/22/2025] [Indexed: 04/03/2025] Open
Abstract
Chiral structures assembled from colloids are of great interest for applications in metamaterials and micromachines. However, similar to their molecular counterparts, these assemblies often result in racemic mixtures. Achieving homochirality by breaking the symmetry remains a significant challenge. Here, we report an approach to obtain single-handed clusters from colloidal dimers using orthogonal electric and magnetic fields. Applying an alternating-current electric field perpendicular to the substrate generates a mixture of chiral clusters with both handedness. However, symmetry is broken by superimposing a planar rotating magnetic field, favoring one chirality over the other. The cluster's chirality can be precisely controlled in situ by adjusting the magnetic field's direction and strength, as well as the electric field frequency. Remarkably, this method also induces uniform chirality in initially achiral clusters when exposed solely to the electric field. Both experimental and numerical analyses reveal that the stability of specific handedness depends on the competition between forces and torques generated by the magnetic field, electric field, and electrohydrodynamic flow. Furthermore, we propose a strategy for producing colloidal clusters with uniform sizes and single-handedness through dynamic tuning of the electric and magnetic fields. This work not only demonstrates the potential of integrating external fields but also provides a viable way to create reconfigurable chiral colloidal structures.
Collapse
Affiliation(s)
- Xingrui Zhu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| | - Yuanxing Zhang
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| | | | - David T. Wu
- Institute of Chemistry, Academia Sinica, Taipei115201, Taiwan (Republic of China)
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO80401
| |
Collapse
|
2
|
Dorbic K, Lattuada M. Synthesis of dimpled polymer particles and polymer particles with protrusions - Past, present, and future. Adv Colloid Interface Sci 2023; 320:102998. [PMID: 37729785 DOI: 10.1016/j.cis.2023.102998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Since the development of emulsion polymerization techniques, polymer particles have become the epitome of standard colloids due to the exceptional control over size, size distribution, and composition the synthesis methods allow reaching. The exploration of different variations of the synthesis methods has led to the discovery of more advanced techniques, enabling control over their composition and shape. Many early investigations focused on forming particles with protrusions (with one protrusion, called dumbbell particles) and particles with concavities, also called dimpled particles. This paper reviews the literature covering the synthesis, functionalization, and applications of both types of particles. The focus has been on the rationalization of the various approaches used to prepare such particles and on the discussion of the mechanisms of formation not just from the experimental viewpoint but also from the standpoint of thermodynamics. The primary motivation to combine in a single review the preparation of both types of particles has been the observation of similarities among some of the methods developed to prepare dimpled particles, which sometimes include the formation of particles with protrusions and vice versa. The most common applications of these particles have been discussed as well. By looking at the different approaches developed in the literature under one general perspective, we hope to stimulate a more ample use of these particles and promote the development of even more effective synthetic protocols.
Collapse
Affiliation(s)
- Kata Dorbic
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
3
|
Guo Y, Lou J, Cho JK, Tilton N, Chun J, Um W, Yin X, Neeves KB, Wu N. Transport of Colloidal Particles in Microscopic Porous Medium Analogues with Surface Charge Heterogeneity: Experiments and the Fundamental Role of Single-Bead Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13651-13660. [PMID: 33079526 DOI: 10.1021/acs.est.0c03225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding colloid transport in subsurface environments is challenging because of complex interactions among colloids, groundwater, and porous media over several length scales. Here, we report a versatile method to assemble bead-based microfluidic porous media analogues with chemical heterogeneities of different configurations. We further study the transport of colloidal particles through a family of porous media analogues that are randomly packed with oppositely charged beads with different mixing ratios. We recorded the dynamics of colloidal particle deposition at the level of single grains. From these, the maximum surface coverage (θmax = 0.051) was measured directly. The surface-blocking function and the deposition coefficient (kpore = 3.56 s-1) were obtained. Using these pore-scale parameters, the transport of colloidal particles was modeled using a one-dimensional advection-dispersion-deposition equation under the assumption of irreversible adsorption between oppositely charged beads and colloids, showing very good agreement with experimental breakthrough curves and retention profiles at the scale of the entire porous medium analogue. This work presents a new approach to fabricate chemically heterogeneous porous media in a microfluidic device that enables the direct measurement of pore-scale colloidal deposition. Compared with the conventional curve-fitting method for deposition constant, our approach allows quantitative prediction of colloidal breakthrough and retention via coupling of direct pore-scale measurements and an advection-dispersion-deposition model.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jincheng Lou
- Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jae Kyoung Cho
- Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nils Tilton
- Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jaehun Chun
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Wooyong Um
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongbuk 790-784, Republic of Korea
| | - Xiaolong Yin
- Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Keith B Neeves
- Departments of Bioengineering and Pediatrics, University of Colorado Denver Anschutz | Medical Campus, Aurora, Colorado 80045, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Sheng M, Zhang L, West JL, Fu S. Multicolor Electrochromic Dye-Doped Liquid Crystal Yolk-Shell Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29728-29736. [PMID: 32508082 DOI: 10.1021/acsami.0c09354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new system of yolk-shell microcapsules containing two types of dye-doped liquid crystals was prepared via seed emulsion polymerization in which the synthetic process was mimicking plant respiration. The resulting system demonstrated reversible low voltage-driven switching between multispectral colored and transparent states. Moreover, wearable multicolor electrochromic fibers based on calcium alginate were produced via wet spinning to expand the application of yolk-shell dye-doped liquid crystal microcapsules. In addition to its long-term optical stability, the proposed cells and fibers also have satisfactory driving voltage values of color change (4.8 and 9.0 V), which are far lower than the human body safety voltage (12 V). We believe that the prepared microcapsules and fibers are potentially widely applicable in smart windows, electronic paper, and military camouflage clothing.
Collapse
Affiliation(s)
- Mingfei Sheng
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P.R. China
| | - Liping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P.R. China
| | - John Lawton West
- Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Shaohai Fu
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
5
|
Chang F, van Ravensteijn BGP, Lacina KS, Kegel WK. Bifunctional Janus Spheres with Chemically Orthogonal Patches. ACS Macro Lett 2019; 8:714-718. [PMID: 35619528 DOI: 10.1021/acsmacrolett.9b00193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bifunctional Janus particles with patches carrying orthogonal surface functionalities that can be independently modified are widely seen as promising building blocks for the bottom-up assembly of functional materials due to their full compositional and geometrical programmability. However, synthesis of these colloids remains an elusive task as current scalable procedures are generally limited to monofunctional particles only. Herein, a scalable bulk wet-chemical synthetic method for fabricating bifunctional Janus particles following a two-step dispersion polymerization is developed. Patch formation on these colloids is driven by the spontaneous phase separation between a brominated outer shell and poly(propargyl acrylate) (p(PA)), formed after the seed particles were swollen with the corresponding monomer. The size ratio between the two patches is readily tunable by controlling the volumetric ratio between the feeding monomers. The distinct patches of these Janus particles carry chemical handles facilitating independent and orthogonal surface modification using Atom Transfer Radical Polymerization (ATRP) and thiol-yne Click chemistry for the brominated and alkyne-containing patches, respectively. The presented route toward bifunctional patchy spheres provides a versatile starting point for the development of bifunctional colloidal particles with tailored directional properties.
Collapse
Affiliation(s)
- Fuqiang Chang
- Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | - Kanvaly S. Lacina
- Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Willem K. Kegel
- Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Maisch J, Jafarli F, Chassé T, Blendinger F, Konrad A, Metzger M, Meixner AJ, Brecht M, Dähne L, Mayer HA. One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core-shell particles. Chem Commun (Camb) 2018; 52:14392-14395. [PMID: 27892555 DOI: 10.1039/c6cc07372g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A facile method is described to prepare micron partly hollow dumbbell silica particles in a single step. The obtained particles consist of a large dense part and a small hollow lobe. The spherical dense core as well as the hollow lobe are covered by mesoporous channels. In the case of the smaller lobe these channels are responsible for the permeability of the shell which was demonstrated by confocal imaging and spectroscopy.
Collapse
Affiliation(s)
- Johannes Maisch
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Farhad Jafarli
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Felix Blendinger
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Alexander Konrad
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Michael Metzger
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany and Institute for Applied Research, Faculty for Mechanical and Medical Engineering, University of Furtwangen, Villingen-Schwenningen, Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Marc Brecht
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany and Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
| | - L Dähne
- Surflay Nanotec GmbH, Max-Planck-Str. 3, 12489 Berlin, Germany
| | - Hermann A Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Cong H, Yu B, Gao L, Yang B, Gao F, Zhang H, Liu Y. Preparation of morphology-controllable PGMA-DVB microspheres by introducing Span 80 into seed emulsion polymerization. RSC Adv 2018; 8:2593-2598. [PMID: 35541463 PMCID: PMC9077385 DOI: 10.1039/c7ra13158e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022] Open
Abstract
Microporous, hollow, or macroporous polymer spheres were prepared by a seed emulsion polymerisation method. Different from the conventional seeded emulsion polymerization, the sorbitan monooleate (Span 80) was added to the seeded emulsion polymerization. In this study, the monodisperse PS seeds prepared by dispersion polymerization were swelled by dibutyl phthalate (DBP), glycidyl methacrylate (GMA), divinylbenzene (DVB) and Span 80 successively. The effect of the amount of Span 80 on the morphology of microspheres was investigated. As different amount of Span 80 was added to the mixture, the poly(glycidyl methacrylate-divinylbenzene) (PGMA-DVB) microspheres showed a variety of morphologies containing microporous, hollow, and macroporous structure. In addition, uniform hollow particles with different pore size can be obtained through adjusting the amount of Span 80. The obtained PGMA-DVB microspheres showed a variety of morphologies by adjusting the amount of Span 80 in the seeded emulsion polymerization.![]()
Collapse
Affiliation(s)
- Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Lilong Gao
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bo Yang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Fei Gao
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hongbo Zhang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yangchun Liu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
8
|
Synthesis of SiOH-functionalized composite particles with buckled surface by seeded emulsion polymerization. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4026-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Jiang K, Liu Y, Yan Y, Wang S, Liu L, Yang W. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polym Chem 2017. [DOI: 10.1039/c6py02094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particles with a hard body and soft, clickable dimple- or bulge-patches are prepared by simple combined chain- and step-growth dispersion polymerization.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaping Yan
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengliu Wang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
10
|
Tian L, Li X, Zhao P, Ali Z, Zhang Q. Fabrication of Liquid Protrusions on Non-Cross-Linked Colloidal Particles for Shape-Controlled Patchy Microparticles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lei Tian
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xue Li
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Panpan Zhao
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zafar Ali
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuyu Zhang
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
11
|
Wang L, Pan M, Song S, Zhu L, Yuan J, Liu G. Intriguing Morphology Evolution from Noncrosslinked Poly(tert-butyl acrylate) Seeds with Polar Functional Groups in Soap-Free Emulsion Polymerization of Styrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7829-40. [PMID: 27389855 DOI: 10.1021/acs.langmuir.6b01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Shaofeng Song
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106-7202, United States
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Gang Liu
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| |
Collapse
|
12
|
Kobayashi C, Watanabe T, Murata K, Kureha T, Suzuki D. Localization of Polystyrene Particles on the Surface of Poly(N-isopropylacrylamide-co-methacrylic acid) Microgels Prepared by Seeded Emulsion Polymerization of Styrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1429-1439. [PMID: 26794923 DOI: 10.1021/acs.langmuir.5b03698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Composite microgels with polystyrene nanoparticles were synthesized by seeded emulsion polymerization of styrene in the presence of pH- and temperature-responsive poly(N-isopropylacrylamide-co-methacrylic acid) microgels as seeds. In particular, the core microgels maintained their swelled state as the pH was increased to 10 during seeded emulsion polymerization conducted at an elevated temperature. Furthermore, we tuned the swelling degree of the core microgels at pH 10 by changing the amount of methacrylic acid incorporated during the synthesis of the core microgels. Unlike deswollen microgels, during the seeded emulsion polymerization, the swollen microgels were covered with a monolayer of non-close-packed polystyrene particles on their surface, as confirmed by electron microscopy. A possible mechanism for the seeded emulsion polymerization of styrene in the presence of swollen microgels under alkaline conditions is proposed.
Collapse
Affiliation(s)
| | | | - Kazuyoshi Murata
- National Institute for Physiological Sciences , 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
13
|
Tian L, Li X, Zhao P, Ali Z, Zhang Q. Impressed pressure-facilitated seeded emulsion polymerization: design of fast swelling strategies for massive fabrication of patchy microparticles. Polym Chem 2016. [DOI: 10.1039/c6py01778a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-pressure and ultrasound swelling polymerization promote the fast and large-scale fabrication of patchy particles for potential applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xue Li
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Panpan Zhao
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Zafar Ali
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| |
Collapse
|
14
|
Liu Y, Jiang K, Ma Y, Liu L, Yang W. Control of cross-linking and reactions in one-step dispersion polymerization toward particles with combined anisotropies. Polym Chem 2016. [DOI: 10.1039/c6py00218h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Particles with a combination of anisotropies in morphology, surface roughness, structure and composition are synthesized by one-step dispersion polymerization.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuhong Ma
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|