1
|
Sofińska K, Barbasz J, Cieśla M, Wawrzkiewicz-Jałowiecka A, Gudowska-Nowak E. Qualitative Description of Detachment Forces for Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kamila Sofińska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - Jakub Barbasz
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - Michał Cieśla
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Ewa Gudowska-Nowak
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
2
|
Seimei A, Saeki D, Matsuyama H. Effect of polyelectrolyte structure on formation of supported lipid bilayers on polyelectrolyte multilayers prepared using the layer-by-layer method. J Colloid Interface Sci 2020; 569:211-218. [DOI: 10.1016/j.jcis.2020.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
|
3
|
Wlodek M, Slastanova A, Fox LJ, Taylor N, Bikondoa O, Szuwarzynski M, Kolasinska-Sojka M, Warszynski P, Briscoe WH. Structural evolution of supported lipid bilayers intercalated with quantum dots. J Colloid Interface Sci 2020; 562:409-417. [PMID: 31806357 DOI: 10.1016/j.jcis.2019.11.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS Supported lipid bilayers (SLBs) embedded with hydrophobic quantum dots (QDs) undergo temporal structural rearrangement. EXPERIMENTS Synchrotron X-ray reflectivity (XRR) was applied to monitor the temporal structural changes over a period of 24 h of mixed SLBs of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) / 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine (POPE) intercalated with 4.9 nm hydrophobic cadmium sulphide quantum dots (CdS QDs). The QD-embedded SLBs (QD-SLBs) were formed via rupture of the mixed liposomes on a positively charged polyethylene imine (PEI) monolayer. Atomic force microscopy (AFM) imaging provided complementary characterization of the bilayer morphology. FINDINGS Our results show time-dependent perturbations in the SLB structure due to the interaction upon QD incorporation. Compared to the SLB without QDs, at 3 h incubation time, there was a measurable decrease in the bilayer thickness and a concurrent increase in the scattering length density (SLD) of the QD-SLB. The QD-SLB then became progressively thicker with increasing incubation time, which - along with the fitted SLD profile - was attributed to the structural rearrangement due to the QDs being expelled from the inner leaflet to the outer leaflet of the bilayer. Our results give unprecedented mechanistic insights into the structural evolution of QD-SLBs on a polymer cushion, important to their potential biomedical and biosensing applications.
Collapse
Affiliation(s)
- Magdalena Wlodek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Anna Slastanova
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Laura J Fox
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Nicholas Taylor
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Oier Bikondoa
- XMaS, The UK-CRG Beamline, The European Synchrotron (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michal Szuwarzynski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Marta Kolasinska-Sojka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Warszynski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.
| |
Collapse
|
4
|
Elnaggar MA, Han DK, Joung YK. Nitric oxide releasing lipid bilayer tethered on titanium and its effects on vascular cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
N’Diaye M, Michel JP, Rosilio V. Relevance of charges and polymer mechanical stiffness in the mechanism and kinetics of formation of liponanoparticles probed by the supported bilayer model approach. Phys Chem Chem Phys 2019; 21:4306-4319. [DOI: 10.1039/c8cp06955g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parameters controlling the mechanism and kinetics of formation of liponanoparticles are determined using supported lipid bilayer models.
Collapse
Affiliation(s)
- Marline N’Diaye
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Jean-Philippe Michel
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Véronique Rosilio
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|
6
|
Kowacz M, Warszyński P. Effect of infrared light on protein behavior in contact with solid surfaces. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Wlodek M, Kolasinska-Sojka M, Szuwarzynski M, Kereïche S, Kovacik L, Zhou L, Islas L, Warszynski P, Briscoe WH. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure. NANOSCALE 2018; 10:17965-17974. [PMID: 30226255 DOI: 10.1039/c8nr05877f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding interactions between functional nanoparticles and lipid bilayers is important to many emerging biomedical and bioanalytical applications. In this paper, we report incorporation of hydrophobic cadmium sulphide quantum dots (CdS QDs) into mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) liposomes, and into their supported bilayers (SLBs). The QDs were found embedded in the hydrophobic regions of the liposomes and the supported bilayers, which retained the QD fluorescent properties. In particular, we studied the effect of the QD size (2.7-5.4 nm in diameter) on the formation kinetics and structure of the supported POPC/POPE bilayers, monitored in situ using quartz crystal microbalance with dissipation monitoring (QCM-D), as the liposomes ruptured onto the substrate. The morphology of the obtained QD-lipid hybrid bilayers was studied using atomic force microscopy (AFM), and their structure by synchrotron X-ray reflectivity (XRR). It was shown that the incorporation of hydrophobic QDs promoted bilayer formation on the PEI cushion, evident from the rupture and fusion of the QD-endowed liposomes at a lower surface coverage compared to the liposomes without QDs. Furthermore, the degree of disruption in the supported bilayer structure caused by the QDs was found to be correlated with the QD size. Our results provide mechanistic insights into the kinetics of the rupturing and formation process of QD-endowed supported lipid bilayers via liposome fusion on polymer cushions.
Collapse
Affiliation(s)
- Magdalena Wlodek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wlodek M, Kolasinska-Sojka M, Wasilewska M, Bikondoa O, Briscoe WH, Warszynski P. Interfacial and structural characteristics of polyelectrolyte multilayers used as cushions for supported lipid bilayers. SOFT MATTER 2017; 13:7848-7855. [PMID: 28976532 DOI: 10.1039/c7sm01645j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The surface properties of polyelectrolyte multilayers (PEMs) obtained via sequential adsorption of oppositely charged polyions from their solutions and used as cushions for supported lipid bilayers were investigated. Five types of polyelectrolytes were used: cationic polyethyleneimine (PEI), poly(diallyldimethylammonium)chloride (PDADMAC), and poly-l-lysine hydrobromide (PLL); and anionic polysodium 4-styrenesulfonate (PSS) and poly-l-glutamic acid sodium (PGA). The wettability and surface free energy of the PEMs were determined by contact angle measurements using sessile drop analysis. Electrokinetic characterisation of the studied films was performed by streaming potential measurements of selected multilayers and the structure of the polyelectrolyte multilayer was characterized by synchrotron X-ray reflectometry. The examined physicochemical properties of the PEMs were correlated with the kinetics of the formation of supported lipid bilayers atop the PEM cushion.
Collapse
Affiliation(s)
- M Wlodek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
9
|
Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions. Colloids Surf B Biointerfaces 2017; 158:667-674. [PMID: 28763774 DOI: 10.1016/j.colsurfb.2017.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
Abstract
The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion.
Collapse
|
10
|
Briscoe WH. Aqueous boundary lubrication: Molecular mechanisms, design strategy, and terra incognita. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Fried ES, Luchan J, Gilchrist ML. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3470-5. [PMID: 26972467 PMCID: PMC4911039 DOI: 10.1021/acs.langmuir.6b00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.
Collapse
Affiliation(s)
- Eric S. Fried
- Department of Chemical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
| | - Joshua Luchan
- Department of Biomedical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
| | - M. Lane Gilchrist
- Department of Chemical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
- Department of Biomedical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
| |
Collapse
|