1
|
Toyoda M, Miura Y, Kobayashi M, Tsuda M, Nomoto T, Honda Y, Nakamura H, Takemoto H, Nishiyama N. Synthesis and Optimization of Ethylenediamine-Based Zwitterion on Polymer Side Chain for Recognizing Narrow Tumorous pH Windows. Biomacromolecules 2024; 25:7788-7798. [PMID: 39481019 PMCID: PMC11632656 DOI: 10.1021/acs.biomac.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Polyzwitterions that show the alternation of net charge in response to external stimuli have attracted great attention as a new class of surface-polymers on nanomedicines. However, the correlation between their detailed molecular structures and expression of antifouling properties under physiological condition remain controversial. Herein, we synthesized a series of ethylenediamine-based polyzwitterions with carboxy groups/sulfonic groups and ethylene, propylene, and butylene spacers as potential surface-polymers for nanomedicines, allowing sensitive recognition of tumor acidic environments (pH = 6.5-5.5). Then, we evaluated their structure-based characteristics, including pH-dependent cellular uptakes and intracellular distributions. Additionally, the role of conformation stability, i.e., Gibbs free energy changes, was to induce an intramolecular electrostatic interaction in the zwitterionic moieties. These results highlight the practicality of fine-tuning the design of zwitterionic moieties on polymers for the future development of nanomedicines that can recognize the narrow pH window in tumor acidic environments.
Collapse
Affiliation(s)
- Masahiro Toyoda
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Department
of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yutaka Miura
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Department
of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Innovation
Center of Nanomedicine (iCONM), Kawasaki
Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Motoaki Kobayashi
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masato Tsuda
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Department
of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takahiro Nomoto
- Department
of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuto Honda
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Innovation
Center of Nanomedicine (iCONM), Kawasaki
Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hiroyuki Nakamura
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Department
of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyasu Takemoto
- Medical
Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Nobuhiro Nishiyama
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Department
of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Innovation
Center of Nanomedicine (iCONM), Kawasaki
Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
2
|
Zeger VR, Bell DS, Anderson JL. Polymeric ionic liquid sorbent coatings in thin film microextraction: Insight into sorbent selectivity for pesticides and cannabinoids. J Chromatogr A 2024; 1715:464583. [PMID: 38160584 DOI: 10.1016/j.chroma.2023.464583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Polymeric ionic liquid (PIL) sorbent coatings consisting of polymerizable cations and anions were employed as sorbent coatings in thin film microextraction (TFME) for the extraction of pesticides and cannabinoids. The blades consisted of a thin film of PIL sorbents chemically bonded to vinyltrimethoxysilane-functionalized nitinol sheets. The imidazolium- or ammonium-based PIL sorbents contained aromatic benzyl moieties as well as polar hydroxyl groups or aliphatic functional groups within the chemical structure of the IL monomer. The chemical structure of the IL crosslinkers of the PILs were kept constant across each sorbent, except for the anion, which consisted of either bis[(trifluoromethyl)sulfonyl]imide ([NTf2-]), p-styrenesulfonate ([SS-]), or 3-sulfopropyl acrylate ([SPA-]). Temperature, salt content, and methanol content were optimized as extraction conditions to maximize pesticide-cannabinoid selectivity using Doehlert design of experiments (DOE). Effects of these three factors on selectivity and extraction efficiency are discussed. The optimal extraction conditions consisting of sample temperature (31°C), sodium chloride (30% w/v), and methanol content (0.25% v/v) are compared to initial sorbent screening conditions at a sample temperature of 40°C, 15% (w/v) sodium chloride, and 2.5% (v/v) methanol content. PIL sorbent swelling behavior at different salt and methanol content conditions and its effect on extraction efficiency are hypothesized. Selectivity factors for the sorbents indicated that aromatic moieties within the IL monomer may enhance pesticide-cannabinoid selectivity under optimized conditions, but the extraction efficiency of pesticides that are known to coelute with cannabinoids in the chromatographic separation may be enhanced by employing sorbent coatings with [SPA-] anions.
Collapse
Affiliation(s)
- Victoria R Zeger
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011, USA
| | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania 16823, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Zeger VR, Bell DS, Anderson JL. Understanding the influence of polymeric ionic liquid sorbent coating substituents on cannabinoid and pesticide affinity in solid-phase microextraction. J Chromatogr A 2023; 1706:464222. [PMID: 37523907 DOI: 10.1016/j.chroma.2023.464222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
To understand factors that drive pesticide-cannabinoid selectivity in solid-phase microextraction (SPME), eight new polymeric ionic liquid (PIL) sorbent coatings were designed and compared to four previously reported PIL sorbent coatings for the extraction of pesticides. The four PIL sorbent coatings consisted of either vinylimidazolium or vinylbenzylimidazolium ILs with long alkyl chain substituents (i.e., -C8H17 or -C12H25) and bis[(trifluoromethyl)sulfonyl]imide ([NTf2-]) anions, from which the eight new PIL sorbent coatings were adapted. Modifications to the chemical structure of IL monomers and crosslinkers included incorporation of polymerizable p-styrenesulfonate or 3-sulfopropyl acrylate anions, the addition of aromatic moieties, and/or the addition of polar functional groups (i.e., -OH or -O- groups). A total of ten commonly regulated pesticides and six cannabinoids were examined in this study. The effect of salt on the solubility of pesticides and cannabinoids in aqueous solutions was assessed by determining their extraction efficiencies in the presence of varied methanol content. Differences in their solubilities appear to play a dominant role in enhancing pesticide-cannabinoid selectivity. The selectivity, represented as the ratio of pesticide total peak areas to cannabinoid total peak areas, also exhibited a moderate correlation to the affinity of the sorbent coatings towards both the pesticides and the cannabinoids. A positive correlation was observed for the pesticides and a negative correlation was observed for the cannabinoids, suggesting that selectivity was driven by more than the presence of salt in the samples. The sorbent coatings' affinity towards each class of analytes were examined to determine specific interactions that might influence selectivity. The two main structural modifications increasing pesticide-cannabinoid selectivity included the absence of aromatic moieties and the addition of hydrogen bond donor functional groups. Extractions of simple aromatic molecules as probes were performed under similar extraction conditions as the cannabinoids and confirmed the influence of hydrogen bonding interactions on sorbent coating affinity.
Collapse
Affiliation(s)
- Victoria R Zeger
- Department of Chemistry, Iowa State University, Ames, IA 50011, United States
| | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania 16823, United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
4
|
Kim D, Hayashi S, Matsuoka H, Saruwatari Y. Effect of Hydrophobicity and Salt on the Temperature Responsiveness of Polymeric Micelles Consisting of Hydrophobic and Sulfobetaine Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1444-1455. [PMID: 36648154 DOI: 10.1021/acs.langmuir.2c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effect of the hydrophobicity of the core part and salt on the temperature responsiveness of polymeric micelles composed of sulfobetaine and hydrophobic blocks was investigated. Poly(sulfopropyl dimethylammonium propylacrylamide) (PSPP) was used as the sulfobetaine; poly(2-ethylhexyl acrylate) (PEHA), poly(n-butyl acrylate) (PnBA), poly(ethyl acrylate) (PEA), or poly(n-hexyl acrylate) (PnHA) was used as the hydrophobic polymer. Measurement of the transmittance revealed that the transition temperature of the sulfobetaine homopolymer could be controlled by adjusting the concentration, the degree of polymerization (DP), and the concentration of the added salt. The effect of the anionic species of the added salt due to the chemical structural properties of the sulfobetaine chain was consistent with the order of ionic species with strong structural destruction in the Hofmeister series. The temperature response and micelle formation behavior of the polymeric micelles according to the hydrophobicity of the core part and the preparation method were examined by static light scattering (SLS), fluorescence measurement with pyrene, dynamic light scattering (DLS), transmittance, and atomic force microscopy (AFM). Micelles that had EHA (solubility in water was 0.01 g/100 mL) as the core and did not show temperature responsiveness expressed temperature responsiveness at a lower hydrophobicity (solubility of nBA in water was 0.14 g/100 mL). nBA-b-SPP did not show temperature responsiveness due to the block ratio. However, when micelles were prepared by dialysis, smaller and more stable micelles could be formed in an equilibrium state, and temperature responsiveness was observed. Their transition temperature can be controlled by adjusting the ratio of the sulfobetaine blocks, the hydrophobicity of the core part, the concentration of the polymer aqueous solution, and the concentration of the added salt. Furthermore, like the sulfobetaine homopolymer, the effect depended on the anionic species of the added salt.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Shinya Hayashi
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industries Ltd., 7-20 Azuchi-Machi, 1-Chome, Chuo-ku, Osaka 541-0052, Japan
| |
Collapse
|
5
|
Hegaard F, Biro R, Ehtiati K, Thormann E. Ion-Specific Antipolyelectrolyte Effect on the Swelling Behavior of Polyzwitterionic Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1456-1464. [PMID: 36656651 DOI: 10.1021/acs.langmuir.2c02798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we systematically investigate the interactions between mobile ions generated from added salts and immobile charges within a sulfobetaine-based polyzwitterionic film in the presence of five salts (KCl, KBr, KSCN, LiCl, and CsCl). The sulfobetaine groups contain quaternary alkylammonium and sulfonate groups, giving the positive and negative charges. The swelling of the zwitterionic film in the presence of different salts is compared with the swelling behavior of a polycationic or polyanionic film containing the same charged groups. For such a comparative study, we design cross-linked terpolymer films with similar thicknesses, cross-link densities, and charge fractions, but with varying charged moieties. While the addition of salt in general leads to a collapse of both cationic and anionic films, the presence of specific types of mobile anions (Cl-, Br-, and SCN-) considerably influences the swelling behavior of polycationic films. We attribute this observation to a different degree of ion-pair formations between the different types of anionic counterions and the immobile cationic quaternary alkylammonium groups in the films where highly polarizable counterions such as SCN- lead to a high degree of ion pairing and less polarizable counterions, such as Cl-, cause a low degree of ion pairing. Conversely, we do not observe any substantial effect of varying the type of cationic counterions (K+, Li+, and Cs+), which we assign to the lack of ion pairing between the weakly polarizable cations and the immobile anionic sulfonate groups in the films. In addition, we observe that the zwitterionic films swell with increasing ionic strength and the degree of swelling is anion dependent, which is in agreement with previous reports on the "antipolyelectrolyte effect". Herein, we explain this ion-specific swelling behavior with the different cation and anion abilities to form ion pairs with quaternary alkylammonium and sulfonate in the sulfobetaine groups.
Collapse
Affiliation(s)
- Frederik Hegaard
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Robert Biro
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Khakzad F, Dewangan NK, Li TH, Safi Samghabadi F, Herrera Monegro R, Robertson ML, Conrad JC. Fouling Resistance and Release Properties of Poly(sulfobetaine) Brushes with Varying Alkyl Chain Spacer Lengths and Molecular Weights. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2009-2019. [PMID: 36533943 DOI: 10.1021/acsami.2c16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We examined the effects of alkyl carbon spacer length (CSL) and molecular weight on fouling resistance and release properties of zwitterionic poly(sulfobetaine methacrylate) brushes. Using surface-initiated atom transfer radical polymerization, we synthesized two series of brushes with CSL = 3 and 4 and molecular weight from 19 to 1500 kg ·mol-1, corresponding to dry brush thickness from around 6 to 180 nm. The brush with CSL = 3 was nearly completely wet with water (independent of molecular weight), whereas the brush with CSL = 4 exhibited a strong increase in water contact angle with molecular weight. Though the two-brush series had distinct wetting properties, both series of brushes exhibited similarly great resistance against fouling by Staphylococcus epidermidis bacteria and Aspergillus niger fungi spores when submerged in water, indicating that neither molecular weight nor CSL strongly affected the antifouling behavior. We also compared the efficacy of brushes against fouling by fungi and silicon oil in air. Brushes grafted to filter paper were strongly fouled by fungi and silicon oil in air. Grafting the polymers to the filter paper, however, greatly enhanced removal of the foulant upon rinsing. The removal of fungi and silicon oil when rinsed with a salt solution was enhanced by 219 and 175%, respectively, as compared to a blank filter paper control. Thus, our results indicate that these zwitterionic brushes can promote foulant removal for dry applications in addition to their well-known fouling resistance in submerged conditions.
Collapse
Affiliation(s)
- Fahimeh Khakzad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Narendra K Dewangan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Tzu-Han Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Farshad Safi Samghabadi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Ronard Herrera Monegro
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Megan L Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
7
|
Yuan H, Liu G. Polyelectrolyte Complexation When Considering the Counterion-Mediated Hydrogen Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8179-8186. [PMID: 35748635 DOI: 10.1021/acs.langmuir.2c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we have investigated a pH-modulated complexation between two oppositely charged strong polyelectrolytes to demonstrate the effect of counterion-mediated hydrogen bonding (CMHB) on polyelectrolyte complexation. We have found that such a pH-modulated complexation cannot be understood without considering the CMHB. Thermodynamically, the effect of CMHB on the polyelectrolyte complexation is manifested by the alteration of both enthalpic and entropic contributions to the free energy change. The pH-dependent intrinsic ion-pairing and complex coacervation processes of the polyelectrolyte complexation can be understood when considering the CMHB. Our study demonstrates that both the extent of polyelectrolyte complex formation in bulk solutions and the formation of polyelectrolyte multilayers on surfaces are controlled by the pH-dependent intrinsic ion-pairing process. Furthermore, on the basis of the pH-dependent intrinsic ion pairing, the properties of the multilayers can be tuned by pH. This work provides a new strategy to control the polyelectrolyte complexation with counterions and will inspire new ideas for building advanced polyelectrolyte materials.
Collapse
Affiliation(s)
- Haiyang Yuan
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, P. R. China 230026
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, P. R. China 230026
| |
Collapse
|
8
|
Lin CH, Luo SC. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7383-7399. [PMID: 35675211 DOI: 10.1021/acs.langmuir.2c00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conducting polymers (CPs) have gained attention as electrode materials in bioengineering mainly because of their mechanical softness compared to conventional inorganic materials. To achieve better performance and broaden bioelectronics applications, the surface modification of soft zwitterionic polymers with antifouling properties represents a facile approach to preventing unwanted nonspecific protein adsorption and improving biocompatibility. This feature article emphasizes the antifouling properties of zwitterionic CPs, accompanied by their molecular synthesis and surface modification methods and an analysis of the interfacial phenomenon. Herein, commonly used methods for zwitterionic functionalization on CPs are introduced, including the synthesis of zwitterionic moieties on CP molecules and postsurface modification, such as the grafting of zwitterionic polymer brushes. To analyze the chain conformation, the structure of bound water in the vicinity of zwitterionic CPs and biomolecule behavior, such as protein adsorption or cell adhesion, provide critical insights into the antifouling properties. Integrating these characterization techniques offers general guidelines and paves the way for designing new zwitterionic CPs for advanced biomedical applications. Recent advances in newly designed zwitterionic CP-based electrodes have demonstrated outstanding potential in modern biomedical applications.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
9
|
Patiño-Agudelo ÁJ, Quina FH. Thermodynamics of anion binding to zwitterionic sulfobetaine micelles. J Colloid Interface Sci 2021; 611:39-45. [PMID: 34929437 DOI: 10.1016/j.jcis.2021.12.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/29/2023]
Abstract
One of the most intriguing aspects of zwitterionic surfactant micelles is their propensity to exhibit selectivity in the binding of the anions of added salts. In this work we examine the thermodynamics of the interaction of the strongly bound perchlorate ion and the more weakly bound bromide ion with micelles of N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB3-14) in aqueous solution employing enthalpies derived from isothermal titration calorimetry combined with Gibbs free energies derived from literature data for the binding equilibria. In both cases, the binding is exothermic and enthalpy driven, but entropically unfavorable, with only modest changes in the Gibbs free energy as a function of the extent of anion binding. Likewise, perchlorate ion binding was found to have little or no effect on the aggregation numbers of SB3-14 micelles determined by time-resolved fluorescence quenching of pyrene by the N-hexadecylpyridinium cation. The results are interpreted within the context of the factors involved in the ion-pairing between the anions and the positive charge center of the zwitterion headgroup and the interplay between electrostatics, solvent reorganization and a net loss of translational degrees of freedom that accompany anion binding.
Collapse
Affiliation(s)
| | - Frank H Quina
- Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Lin K, Jing B, Zhu Y. pH-Dependent complexation and polyelectrolyte chain conformation of polyzwitterion-polycation coacervates in salted water. SOFT MATTER 2021; 17:8937-8949. [PMID: 34549769 DOI: 10.1039/d1sm00880c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phase behavior and chain conformational structure of biphasic polyzwitterion-polyelectrolyte coacervates in salted aqueous solution are investigated with a model weak cationic polyelectrolyte, poly(2-vinylpyridine) (P2VP), whose charge fraction can be effectively tuned by pH. It is observed that increasing the pH leads to the increase of the yielding volume fraction and the water content of dense coacervates formed between net neutral polybetaine and cationic P2VP in contrast to the decrease of critical salt concentration for the onset of coacervation, where the P2VP charge fraction is reduced correspondingly. Surprisingly, a single-molecule fluorescence spectroscopic study suggests that P2VP chains upon coacervation seem to adopt a swollen or an even more expanded conformational structure at higher pH. As the hydrophobicity of P2VP chains is accompanied by a reduced charge fraction by increasing the pH, a strong pH-dependent phase and conformational behaviors suggest the shift of entropic and enthalpic contribution to the underlying thermodynamic energy landscape and chain structural dynamics of polyelectrolyte coacervation involving weak polyelectrolytes in aqueous solution.
Collapse
Affiliation(s)
- Kehua Lin
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
11
|
The Anion Binding Affinity Determines the Strength of Anion Specificities of Thermosensitive Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Kim D, Matsuoka H, Yusa SI, Saruwatari Y. Collapse Behavior of Polyion Complex (PIC) Micelles upon Salt Addition and Reforming Behavior by Dialysis and Its Temperature Responsivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15485-15492. [PMID: 33325225 DOI: 10.1021/acs.langmuir.0c02456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Temperature-responsive polyion complex (PIC) micelles were prepared by using two diblock copolymers composed of a sulfobetaine chain (poly(sulfopropyldimethylammonium propylacrylamide), PSPP) and ionic chains (poly(sodium styrenesulfonate), PSSNa, or poly(3-(methacrylamido)propyltrimethylammonium chloride), PMAPTAC). Because the core is PIC and the shell is sulfobetaine with UCST-type temperature response, the corona expands and contracts in response to temperature. To control the size and uniformity of the PIC micelles, the collapse of PIC micelles by salt addition and the reforming behavior by dialysis were investigated by transmittance, DLS, TEM, AFM, and 1H NMR measurements. Investigation of the ionic species dependence of the added salt in the collapse behavior of PIC micelles revealed that it was dependent on the anionic species, although no dependence on the cationic species was observed. Its effectiveness was in the order of I- > Br- > Cl- > F-, which is in agreement with the order of ionic species with strong structural destruction in the Hofmeister series. Heterogeneous and large PIC micelles were formed by the simple mixing method. They collapsed by salt addition and were reformed by the dialysis method to form uniform and smaller PIC micelles. This is considered to be because a uniform and smaller micelle is formed to reform in equilibrium state by dialysis. The temperature response of PIC micelles formed by the simple mixing method and PIC micelles reformed by dialysis showed nearly the same temperature-transmittance curves. These results indicate that the temperature response of PIC micelles is affected by the concentration rather than the hydrodynamic radius. Furthermore, the stability of PIC micelles was found to be affected by the concentration temperature (the temperature at the time of concentration).
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industries Ltd., 7-20 Azuchi-Machi, 1-Chome, Chuo-ku, Osaka 541-0052, Japan
| |
Collapse
|
14
|
Scott PJ, Spiering GA, Wang Y, Seibers ZD, Moore RB, Kumar R, Lokitz BS, Long TE. Phosphonium-Based Polyzwitterions: Influence of Ionic Structure and Association on Mechanical Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Philip J. Scott
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Glenn A. Spiering
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zach D. Seibers
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Robert B. Moore
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Bradley S. Lokitz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Timothy E. Long
- School of Molecular Sciences, Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (BCSM3), Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
15
|
Chen Z, Liao M, Zhang L, Zhou J. Molecular simulations on the hydration and underwater oleophobicity of zwitterionic self‐assembled monolayers. AIChE J 2020. [DOI: 10.1002/aic.17103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| | - Mingrui Liao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| |
Collapse
|
16
|
Higaki Y, Kobayashi M, Takahara A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9015-9024. [PMID: 32677837 DOI: 10.1021/acs.langmuir.0c01672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyzwitterions have emerged as a new class of antifouling materials alternating poly(ethylene glycol). The exemplary biopassivation and lubrication behaviors are often attributed to the particular chemical structure of zwitterions, which involve a large dipole moment of the charged groups and a neutral net charge, while the hydration state and dynamics also associate with these characteristics. Polymer brushes composed of surface-tethered polyzwitterion chains produced by surface-initiated controlled radical polymerization have been developed as thin films which exhibit excellent antifouling and lubrication properties. In past decades, numerous studies have been devoted to examining the structure and dynamics of polyzwitterion brush chains in aqueous solutions. This feature article provides an overview of recent studies exploring the hydration state of polyzwitterion brushes with specular neutron reflectivity, highlights some newly published work on the nonuniform equilibrium structure, ion concentration dependence, ion specificity, and the effects of charge spacer length in the zwitterions, and discusses future perspective in this field.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | | |
Collapse
|
17
|
Yuan H, Liu G. Ionic effects on synthetic polymers: from solutions to brushes and gels. SOFT MATTER 2020; 16:4087-4104. [PMID: 32292998 DOI: 10.1039/d0sm00199f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ionic effects on synthetic polymers have attracted extensive attention due to the crucial role of ions in the determination of the properties of synthetic polymers. This review places the focus on specific ion effects, multivalent ion effects, and ionic hydrophilicity/hydrophobicity effects in synthetic polymer systems from solutions to brushes and gels. The specific ion effects on neutral polymers are determined by both the direct and indirect specific ion-polymer interactions, whereas the ion specificities of charged polymers are mainly dominated by the specific ion-pairing interactions. The ionic cross-linking effect exerted by the multivalent ions is widely used to tune the properties of polyelectrolytes, while the reentrant behavior of polyelectrolytes in the presence of multivalent ions still remains poorly understood. The ionic hydrophilicity/hydrophobicity effects not only can be applied to make strong polyelectrolytes thermosensitive, but also can be used to prepare polymeric nano-objects and to control the wettability of polyelectrolyte brush-modified surfaces. The not well-studied ionic hydrogen bond effects are also discussed in the last section of this review.
Collapse
Affiliation(s)
- Haiyang Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026, P. R. China.
| | | |
Collapse
|
18
|
Cai H, Kou R, Liu G. Counterion-Tunable Thermosensitivity of Strong Polyelectrolyte Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16862-16868. [PMID: 31774295 DOI: 10.1021/acs.langmuir.9b02982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, poly(sodium styrene sulfonate) brushes have been employed as a precursor to prepare thermosensitive strong polyelectrolyte brushes (SPBs) through a counterion exchange strategy. The substitution of hydrophilic Na+ counterions by hydrophobic tetraalkylphosphonium counterions leads to a thermoresponsivity of the SPBs. The thermosensitive properties including hydration, stiffness, and surface water wettability of the SPBs can be modulated by the type of the tetraalkylphosphonium counterions. Nevertheless, the wet thickness of the SPBs with tetraalkylphosphonium counterions does not exhibit an obvious temperature dependency due to the high steric barrier in the crowded environment of SPBs generated by the large tetraalkylphosphonium counterions. The mixtures of small Na+ counterions and large tetraalkylphosphonium counterions are employed to realize the thermosensitive wet thickness without sacrificing other thermoresponsive properties of the SPBs because the mixed counterions can bring both a certain hydrophobicity and some free space to the brushes. This work opens up the opportunities available for the use of counterions to tune the thermosensitivity of SPBs.
Collapse
Affiliation(s)
- Hongtao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , No. 96, JinZhai Road , Hefei 230026 , P. R. China
| | - Ran Kou
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , No. 96, JinZhai Road , Hefei 230026 , P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , No. 96, JinZhai Road , Hefei 230026 , P. R. China
| |
Collapse
|
19
|
Silva GT, Quina FH. Ion–micelle interactions and the modeling of reactivity in micellar solutions of simple zwitterionic sulfobetaine surfactants. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Zhu J, Pan J, Ma C, Zhang G, Liu G. Specific Ion Effects on the Enzymatic Degradation of Polymeric Marine Antibiofouling Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11157-11166. [PMID: 31347852 DOI: 10.1021/acs.langmuir.9b01740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is expected that the widely dispersed ions in seawater would have strong influence on the performance of polymeric marine antibiofouling materials through the modulation of enzymatic degradation of the materials. In this work, poly(ε-caprolactone)-based polyurethane and poly(triisopropylsilyl methacrylate-co-2-methylene-1,3-dioxepane) have been employed as model systems to explore the specific ion effects on the enzymatic degradation of polymeric marine antibiofouling materials. Our study demonstrates that the specific ion effects on the enzymatic degradation of the polymer films are closely correlated with the ion-specific enzymatic hydrolysis of the ester. In the presence of different cations, the effectiveness of the enzyme to degrade the polymer films is dominated by the direct specific interactions between the cations and the negatively charged enzyme molecules. In the presence of different anions, the kosmotropic anions give rise to a high enzyme activity in the degradation of polymer films induced by the salting-out effect, whereas the chaotropic anions lead to a low enzyme activity in the degradation of the polymer films owing to the salting-in effect. This work highlights the opportunities available for the use of specific ion effects to modulate the enzymatic degradation of polymeric antibiofouling materials in the marine environment.
Collapse
Affiliation(s)
- Jie Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Jiansen Pan
- Faculty of Materials Science and Engineering , South China University of Technology , 510640 Guangzhou , P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , 510640 Guangzhou , P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , 510640 Guangzhou , P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
21
|
Schönemann E, Laschewsky A, Wischerhoff E, Koc J, Rosenhahn A. Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling. Polymers (Basel) 2019; 11:E1014. [PMID: 31181764 PMCID: PMC6631746 DOI: 10.3390/polym11061014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s. Their chemical structures were varied systematically, the monomers carrying methacrylate, methacrylamide, or styrene moieties as polymerizable groups. High molar mass homopolymers were obtained by free radical polymerization. Although their solubilities in most solvents were very low, brine and lower fluorinated alcohols were effective solvents in most cases. A set of sulfabetaine copolymers containing about 1 mol % (based on the repeat units) of reactive benzophenone methacrylate was prepared, spin-coated onto solid substrates, and photo-cured. The resistance of these films against the nonspecific adsorption by two model proteins (bovine serum albumin-BSA, fibrinogen) was explored, and directly compared with a set of references. The various polyzwitterions reduced protein adsorption strongly compared to films of poly(nbutyl methacrylate) that were used as a negative control. The poly(sulfabetaine)s showed generally even somewhat higher anti-fouling activity than their poly(sulfobetaine) analogues, though detailed efficacies depended on the individual polymer-protein pairs. Best samples approach the excellent performance of a poly(oligo(ethylene oxide) methacrylate) reference.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Erik Wischerhoff
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
22
|
Liu G. Tuning the Properties of Charged Polymers at the Solid/Liquid Interface with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3232-3247. [PMID: 29806944 DOI: 10.1021/acs.langmuir.8b01158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In conventional theories, where ions are treated as point charges, the properties of charged polymers can be tuned using ions via the ionic strength. However, this article will show that the properties of charged polymers at the solid/liquid interface, including charged polymer brushes and polyelectrolyte multilayers, can be tuned by ions beyond ionic strength effects. Ion specificity, multivalency, ionic hydrogen bonding, and ionic hydrophobicity/hydrophilicity are used to tune a range of properties of charged polymers at the solid/liquid interface such as hydration, conformation, stiffness, surface wettability, lubricity, adhesion, and protein adsorption. The ionic effects demonstrated here greatly broaden our understanding of the use of ions to tune the interfacial properties of charged polymers. It is anticipated that these ionic effects can be further expanded by incorporating new types of important ion-charged polymer interactions and can also be extended to neutral polymer systems.
Collapse
Affiliation(s)
- Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
23
|
Yu Y, Yao Y, van Lin S, de Beer S. Specific anion effects on the hydration and tribological properties of zwitterionic phosphorylcholine-based brushes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
van Andel E, Lange SC, Pujari SP, Tijhaar EJ, Smulders MMJ, Savelkoul HFJ, Zuilhof H. Systematic Comparison of Zwitterionic and Non-Zwitterionic Antifouling Polymer Brushes on a Bead-Based Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1181-1191. [PMID: 30265555 PMCID: PMC6366122 DOI: 10.1021/acs.langmuir.8b01832] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/30/2018] [Indexed: 05/22/2023]
Abstract
Nonspecific adsorption of biomolecules to solid surfaces, a process called biofouling, is a major concern in many biomedical applications. Great effort has been made in the development of antifouling polymer coatings that are capable of repelling the nonspecific adsorption of proteins, cells, and micro-organisms. In this respect, we herein contribute to understanding the factors that determine which polymer brush results in the best antifouling coating. To this end, we compared five different monomers: two sulfobetaines, a carboxybetaine, a phosphocholine, and a hydroxyl acrylamide. The antifouling coatings were analyzed using our previously described bead-based method with flow cytometry as the read-out system. This method allows for the quick and automated analysis of thousands of beads per second, enabling fast analysis and good statistics. We report the first direct comparison made between a sulfobetaine with opposite charges separated by two and three methylene groups and a carboxybetaine bearing two separating methylene groups. It was concluded that both the distance between opposite charges and the nature of the anionic groups have a distinct effect on the antifouling performance. Phosphocholines and simple hydroxyl acrylamides are not often compared with the betaines. However, here we found that they perform equally well or even better, yielding the following overall antifouling ranking: HPMAA ≥ PCMA-2 ≈ CBMAA-2 > SBMAA-2 > SBMAA-3 ≫ nonmodified beads (HPMAA being the best).
Collapse
Affiliation(s)
- Esther van Andel
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Cell
Biology and Immunology Group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Stefanie C. Lange
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sidharam P. Pujari
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Edwin J. Tijhaar
- Cell
Biology and Immunology Group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Huub F. J. Savelkoul
- Cell
Biology and Immunology Group, Wageningen
University, De Elst 1, 6709 PG Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
- Department
of Chemical and Materials Engineering, King
Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Belanger A, Decarmine A, Jiang S, Cook K, Amoako KA. Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1984-1988. [PMID: 30299969 DOI: 10.1021/acs.langmuir.8b03078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of surface coatings on the performance of antifouling activity under flow can be influenced by the flow/coating interactions. This study evaluates the effect of surface coatings on antifouling activity under different flows for the analyses of coating stability. This was done by exposing DOPA-PCB-300/dopamine coated polydimethylsiloxane (PDMS) to physiological shear stresses using a recirculation system which consisted of dual chamber acrylic flow cells, tygon tubing, flow probe and meter, and perfusion pumps. The effect of shear stress induced by phosphate buffered saline flow on coating stability was characterized with differences in fibrinogen adsorption between control (coated PDMS not loaded with shear stress) and coated samples loaded with various shear stresses. Fibrinogen adsorption data showed that relative adsorption on coated PDMS that were not exposed to shear (5.73% ± 1.97%) was significantly lower than uncoated PDMS (100%, p < 0.001). Furthermore, this fouling level, although lower, was not significantly different from coated PDMS membranes that were exposed to 1 dyn/cm2 (9.55% ± 0.09%, p = 0.23), 6 dyn/cm2 (15.92% ± 10.88%, p = 0.14), and 10 dyn/cm2 (21.62% ± 13.68%, p = 0.08). Our results show that DOPA-PCB-300/dopamine coatings are stable, with minimal erosion, under shear stresses tested. The techniques from this fundamental study may be used to determine the limits of stability of coatings in long-term experiments.
Collapse
Affiliation(s)
| | | | - Shaoyi Jiang
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Keith Cook
- Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | | |
Collapse
|
26
|
Wang YS, Yau S, Chau LK, Mohamed A, Huang CJ. Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1652-1661. [PMID: 30107740 DOI: 10.1021/acs.langmuir.8b01779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Surface modification for biosensors has focused attention for improvement of their sensitivity and specificity, particularly for the detection in complex medium. In this work, we have synthesized zwitterionic carboxybetaine-thiols (CB-thiols) and sulfobetaine-thiols (SB-thiols) for modification of gold substrates to form a functional self-assembled monolayer (SAM) for the immunoassay in a surface plasmon resonance (SPR) biosensor. X-ray photoelectron spectroscopy (XPS), contact angle goniometer, and cyclic voltammetry were applied for characterizations of elemental composition, surface wettability, and packing density, respectively. The antifouling properties of the SAMs were accessed by quantitative analysis of protein and bacterial adsorption. The results from the SAMs with a single component indicated that the SB-thiol SAM provides better surface hydrophilicity, fouling resistance, and packing density as compared to the CB-thiol SAM, likely due to the ionic association of CB moieties. However, the CB-thiol with the functional carboxylate group plays a critical role in postmodification of biomolecules via commercially available amine coupling chemistry. Thus, the mixed SAMs were prepared to integrate the unique characteristics from CB- and SB-thiols to control compositions and surface properties. The immunoassay was performed in the SPR biosensor, showing that the zwitterionic mixed SAM enables immobilization of biorecognition elements (BREs), and improved sensitivity and specificity. Consequently, the work reveals excellent and attractive versatility, antifouling, and functionalizable properties of zwitterionic mixed SAMs comprising CB- and SB-thiols for biosensing applications. This surface chemistry is expected to be applicable to monitor specific molecular recognition events.
Collapse
Affiliation(s)
| | - Shuehlin Yau
- Department of Chemistry , National Central University , Jhong-Li , Taoyuan 320 , Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection , National Chung Cheng University , Chiayi 621 , Taiwan
| | | | | |
Collapse
|
27
|
Sakamaki T, Inutsuka Y, Igata K, Higaki K, Yamada NL, Higaki Y, Takahara A. Ion-Specific Hydration States of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1583-1589. [PMID: 30441903 DOI: 10.1021/acs.langmuir.8b03104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ion-specific hydration states of zwitterionic poly(3-( N-2-methacryloyloxyethyl- N, N-dimethyl)ammonatopropanesulfonate) (PMAPS) brushes in various aqueous solutions were investigated by neutron reflectivity (NR) and atomic force microscopy (AFM). The asymmetric hydration state of the PMAPS brushes was verified from the NR scattering-length density profiles, while the variation in their swollen thickness was complementary as determined from AFM topographic images. PMAPS brushes got thicker in any salt solutions, while the extent of swelling and the dimensions of swollen chain structure were dependent on the ion species and salt concentration in the solutions. Anion specificity was clearly observed, whereas cations exhibited weaker modulation in ion-specific hydration states. The anion specificity could be ascribed to ion-specific interactions between the quaternary ammonium cation in sulfobetaine and the anions. The weak cation specificity was attributed to the intrinsically weak cohesive interactions between the weakly hydrated sulfonate anion in sulfobetaine and the strongly hydrated cations. The ion-specific hydration of PMAPS brushes was largely consistent with the ion-specific aggregation state of the PMAPS chains in aqueous solutions.
Collapse
Affiliation(s)
| | | | | | | | - Norifumi L Yamada
- Neutron Science Laboratory , High Energy Accelerator Research Organization , Ibaraki 319-1106 , Japan
| | | | | |
Collapse
|
28
|
Chen Y, Luo SC. Synergistic Effects of Ions and Surface Potentials on Antifouling Poly(3,4-ethylenedioxythiophene): Comparison of Oligo(Ethylene Glycol) and Phosphorylcholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1199-1210. [PMID: 30089366 DOI: 10.1021/acs.langmuir.8b02122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For electrified surfaces, ions and applied potentials play major roles in controlling the surface properties. Antifouling materials such as poly(ethylene glycol) and zwitterionic polymers that resist nonspecific protein binding and cell adhesion play a key role in various biomedical applications. In this study, we investigated and compared the antifouling properties of conducting polymers grafted with oligo(ethylene glycol) groups and phosphorylcholine (PC) groups in the presence of different anions and applied potentials. Considerable effort has been made to illustrate the different effects of manipulating the antifouling properties of these two surfaces. We prepared polymer films by applying electropolymerization to two functionalized (3,4-ethylenedioxythiophene) polymers containing triethylene glycol and PC groups, respectively. A quartz crystal microbalance with dissipation (QCM-D) was employed to characterize the negatively charged bovine serum albumin and positively charged lysozyme adsorption as a function of ionic concentration in the presence of various Hofmeister anions. The frequency changes corresponded to the protein or ion adsorption/desorption behavior on the surface. The anions adsorbed on polymer films to effectively enhance the hydration layer of the polymer surface and reduce nonspecific protein binding. We further integrated a potentiostat with the QCM-D to control the protein adsorption/desorption behaviors by applying potentials, and we conducted an electrochemical QCM-D study. Most importantly, with the synergistic effect of ions and surface potential, a nearly fresh polymer surface was regenerated. This study describes principles to maintain and regenerate the antifouling properties of electrified surfaces, which are critical for implanted bioelectronics applications.
Collapse
Affiliation(s)
- Yue Chen
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
- Advanced Research Center for Green Materials Science and Technology , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
29
|
Zhang J, Cai H, Tang L, Liu G. Tuning the pH Response of Weak Polyelectrolyte Brushes with Specific Anion Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12419-12427. [PMID: 30220208 DOI: 10.1021/acs.langmuir.8b02776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The positively charged poly( N, N'-dimethylaminoethyl methacrylate) (PDMAEMA) brushes have been employed as model weak polyelectrolyte brushes (WPBs) to demonstrate the tuning of the pH response of WPBs with specific anion effects. The charge density of PDMAEMA brushes can be modulated by specific ion-pairing interactions between counterions and the protonated dimethylamino group; as a result, the strength of the pH response of PDMAEMA brushes can be tuned by specific anion effects. A more chaotropic counterion can more strongly interact with the protonated dimethylamino group, thereby more effectively neutralizing the positively charged group associated with the grafted weak polyelectrolyte chains and more remarkably suppressing the pH response of PDMAEMA brushes. Although the pH response of PDMAEMA brushes is insensitive to the anion identity at a low salt concentration, it can be tuned by specific anion effects at relatively high salt concentrations. Our study demonstrates that the pH-responsive properties of PDMAEMA brushes including hydration, conformation, oil wettability, and adhesion can be tuned by specific anion effects. The work presented here provides a method to tune the pH response of WPBs by the anion identity.
Collapse
Affiliation(s)
- Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongtao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ling Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
30
|
Zhu R, Baraniak MK, Jäkle F, Liu G. Anion Specificity in Dimethyl Sulfoxide-Water Mixtures Exemplified by a Thermosensitive Polymer. J Phys Chem B 2018; 122:8293-8300. [PMID: 30086631 DOI: 10.1021/acs.jpcb.8b06125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present work, we have investigated the anion-specific upper critical solution temperature (UCST) behavior of polymer-supported borinic acid (PBA) in dimethyl sulfoxide-water (DMSO-H2O) mixtures. An inverted V-shaped series CH3COO- < Cl- < salt-free > NO3- > ClO4- > SCN- is observed in terms of the anion-specific UCST of PBA in the DMSO-H2O mixtures. Both direct anion-polymer interactions and indirect solvent-mediated anion-polymer interactions are involved in the specific anion effect on the UCST behavior of PBA. The direct binding of anions to the PBA surface generates a salting-in effect on PBA, causing the UCST for the different types of anions to increase from chaotropic to kosmotropic anions due to the stronger binding of the more chaotropic anions. On the other hand, the indirect anionic polarization of hydrogen bonding between PBA and DMSO molecules also produces a salting-in effect on PBA, leading the UCST for the different types of anions to increase from kosmotropic to chaotropic anions because of the stronger capability of the more kosmotropic anions to polarize the hydrogen bonding. Thus, the dominating anion-PBA interactions change from the direct anion binding to the indirect anionic polarization of hydrogen bonding as the anions change from chaotropes to kosmotropes. The observed inverted V-shaped series suggests that the specific anion effect on the UCST behavior of PBA in the DMSO-H2O mixtures is determined by the combined effects of the binding of anions to the PBA surface and the anionic polarization of hydrogen bonding between PBA and DMSO molecules.
Collapse
Affiliation(s)
- Renwei Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Monika K Baraniak
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Frieder Jäkle
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
31
|
Li W, Cao F, He C, Ohno K, Ngai T. Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8798-8806. [PMID: 29983064 DOI: 10.1021/acs.langmuir.8b01968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophilic or zwitterionic polymer-functionalized surfaces have become attractive biomaterials in bioscience and technology due to their excellent protein-resistant ability. Understanding the fundamental interactions between proteins and polymers plays an essential role in the surface design of biomaterials. In this work, we studied the interactions between bovine serum albumin (BSA) and two sorts of polymer brushes including zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and hydrophilic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) in NaCl aqueous solutions directly with a self-established total internal reflection microscope (TIRM) to provide a better understanding of the underlying nonfouling mechanism of polymers. Our results indicate that both the surface charge and brushes length can affect protein adsorption through electrostatic and steric repulsions, respectively. Both PCBMA- and POEGMA-coated surfaces display negative charge properties due to incomplete coverage and ionic adsorption. As a result, strong electrostatic repulsions between proteins and negatively charged polymer-coated surfaces could contribute to the resistance of protein-coated particles in solutions with low ionic strength (0.1, 0.5, and 1 mM) and disappear in solutions with high ionic strength (10 mM). The measured interaction profiles demonstrate that PCBMA brushes could provide apparent steric forces only at high ionic strength (10 mM), where zwitterionic brushes exhibit a relatively extended conformation with a lack of electrostatic forces between intra- and interpolymers. In contrast, the steric repulsion between proteins and POEGMA brushes appears when particles diffuse at low positions in all salt concentrations (0.1-10 mM) with similar steric decay lengths, which results from the unresponsiveness of POEGMA brushes to the salt stimulus.
Collapse
Affiliation(s)
- Wendi Li
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| | - Feng Cao
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| | - Chuanxin He
- College of Chemistry Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518060 , PR China
| | - Kohji Ohno
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - To Ngai
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , N.T., Hong Kong SAR, PR China
| |
Collapse
|
32
|
Kou R, Zhang J, Chen Z, Liu G. Counterion Specificity of Polyelectrolyte Brushes: Role of Specific Ion-Pairing Interactions. Chemphyschem 2018; 19:1404-1413. [PMID: 29575481 DOI: 10.1002/cphc.201701256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/10/2022]
Abstract
We demonstrate here that the properties of poly (2-(methacryloyloxy) ethyl trimethylammonium chloride) brushes can be tuned by counterion species. When the brushes are exposed to external chloride (Cl- ) counterions, obvious dehydration and collapse are only observed at high salt concentrations. In the presence of very strongly chaotropic perchlorate (ClO4- ), the brushes strongly dehydrate and collapse at a very low salt concentration. For the strongly chaotropic thiocyanate ion (SCN- ), the changes in hydration and conformation of the brushes are similar to those observed for ClO4- but at a smaller extent at very low salt concentrations. With the addition of kosmotropic acetate (Ac- ), hydration of the brushes increases, accompanied by a swelling of the brushes in the low-salt-concentration regime. In contrast, the brushes dehydrate and collapse with increasing concentration of Ac- in the high-salt-concentration regime. The counterion specificity of the brushes demonstrated here is determined by specific ion-pairing interactions through modulating the osmotic pressure within the brushes and the hydrophobicity of the ion pairs.
Collapse
Affiliation(s)
- Ran Kou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhen Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
33
|
Kerch G. Polymer hydration and stiffness at biointerfaces and related cellular processes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:13-25. [DOI: 10.1016/j.nano.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/15/2023]
|
34
|
Yuan P, Ruan Z, Liu L, Li T, Jing T, Yan L. Sharp-pH-Sensitive Amphiphilic Polypeptide Micelles with Adjustable Triggered pHs by Salts via the Hofmeister Effect. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Le Liu
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Titao Jing
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry; and Department of Chemical Physics; iChEM; University of Science and Technology of China; Jinzai Road 96# Hefei 230026 Anhui P. R. China
| |
Collapse
|
35
|
Aikawa T, Okura H, Kondo T, Yuasa M. Comparison of Carboxybetaine with Sulfobetaine as Lipid Headgroup Involved in Intermolecular Interaction between Lipids in the Membrane. ACS OMEGA 2017; 2:5803-5812. [PMID: 31457839 PMCID: PMC6644530 DOI: 10.1021/acsomega.7b00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/17/2017] [Indexed: 05/05/2023]
Abstract
Diacylglycerides (DAGs) constitute an important category of lipids owing to their ability to form a lipid membrane, which can be used in a wide variety of biomedical applications. DAGs often include a zwitterionic polar headgroup that can influence the properties of the lipid membrane (e.g., protein adsorption, ion binding, hydration, membrane fluidity, phase stability) and affect their applicability. To clarify the effect of the charge arrangement of zwitterionic headgroups on intermolecular interactions in the DAG bilayers, we investigated the intermolecular interaction between a naturally occurring DAG (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)) and synthetic DAGs (which is called "inverse charge zwitterlipids (ICZLs)") whose headgroup charges were antiparallel with respect to those of DPPC. We used 1,2-dipalmitoyl-sn-glycero-3-carboxybetaine (DPCB) and 1,2-dipalmitoyl-sn-glycero-3-sulfobetaine (DPSB) as ICZLs and compared two combinations of the lipids (DPPC-DPCB and DPPC-DPSB). We obtained surface pressure-area (π-A) isotherms to elucidate the intermolecular interaction between the lipids in the monolayer at the air/water interface. We found shrinkage of the area per molecule in both lipid combinations, indicating that mixing DPPC with ICZLs results in an attractive intermolecular force. As an overall trend, the degree of shrinkage of the mixed monolayer and the thermodynamic favorability of mixing were greater in the DPPC-DPCB combination than in the DPPC-DPSB combination. These trends were also observed in the lipid bilayers, as determined from the gel-to-liquid crystal phase transition temperature (T c) of the aqueous dispersion of the lipid vesicles. In the highly compressed lipid monolayers and vesicles (lipid bilayer), the molar fractions of ICZLs, in which the intermolecular interaction reached a maximum, were 0.6-0.8 for the DPPC-DPCB combination and 0.5 (equimolar composition) for the DPPC-DPSB combination. Therefore, in the compressed monolayers and bilayers, the mechanism of intermolecular interaction between DPPC and DPCB is different from that between DPPC and DPSB.
Collapse
Affiliation(s)
- Tatsuo Aikawa
- Department
of Pure and Applied Chemistry, Faculty of Science and
Technology and Research Institute for Science & Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hazuki Okura
- Department
of Pure and Applied Chemistry, Faculty of Science and
Technology and Research Institute for Science & Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takeshi Kondo
- Department
of Pure and Applied Chemistry, Faculty of Science and
Technology and Research Institute for Science & Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Makoto Yuasa
- Department
of Pure and Applied Chemistry, Faculty of Science and
Technology and Research Institute for Science & Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
36
|
Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, Yamada NL, Moriwaki T, Ikemoto Y, Takahara A. Effect of Charged Group Spacer Length on Hydration State in Zwitterionic Poly(sulfobetaine) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8404-8412. [PMID: 28737401 DOI: 10.1021/acs.langmuir.7b01935] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Effect of alkyl chain spacer length between the charged groups (CSL) in zwitterionic poly(sulfobetaine) (PSB) brushes on the hydration state was investigated. PSB brushes with ethyl (PMAES), propyl (PMAPS), or butyl (PMABS) CSL were prepared by surface-initiated atom transfer radical polymerization on silicon wafers. Hydration states of the PSB brushes in aqueous solutions and/or humid vapor were investigated by contact angle measurement, infrared spectroscopy, AFM observation, and neutron reflectivity. The PSB brushes are swollen in humid air and deionized water due to the hydration of the charged groups leading to the reduction of hydrated PSB brushes/water interfacial free energy. The hydrated PSB brushes exhibit clear interface with low interfacial roughness due to networking of the PSB brush chains through association of the SBs. The hydrated PSB brushes produce diffusive swollen layer in the presence of NaCl because of the charge screening followed by SB dissociation by the bound ions. The ionic strength sensitivity in the hydration got more significant with increasing the CSL in SBs because of the augmentation in partial charge by charged group separation.
Collapse
Affiliation(s)
- Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Inutsuka
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsunori Sakamaki
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuki Terayama
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Takenaka
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiko Higaki
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norifumi L Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization , Ibaraki 319-1106, Japan
| | - Taro Moriwaki
- Japan Synchrotron Radiation Research Institute/SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute/SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Maji T, Banerjee S, Bose A, Mandal TK. A stimuli-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding antifouling polymer with tunable thermosensitivity. Polym Chem 2017. [DOI: 10.1039/c7py00460e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report describes a dual pH- and thermo-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding zwitterionic antifouling polymer with ion-induced tunable thermosensitivity.
Collapse
Affiliation(s)
- Tanmoy Maji
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sanjib Banerjee
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Avijit Bose
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|