1
|
Li X, Fan Y, Wu C, Wang L. Advances in Molecular Dynamics-Based Characterization of Water and Ion Adsorption and Transport in C-S-H Gels. Polymers (Basel) 2024; 16:3285. [PMID: 39684030 DOI: 10.3390/polym16233285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Cementitious material durability is affected by the transport and adsorption of water molecules and ions in the nanopore channels of cement hydration products. Hydrated calcium silicate (C-S-H) accounts for about 70% of the hydration product. It determines the mechanical properties of cementitious materials and their internal transport properties. The molecular dynamics method provides a complementary understanding of experimental and theoretical results. It can further reveal water molecules and ions' adsorption and transport mechanisms in C-S-H gel pores. This review article provides an overview of the current state of research on the structure of C-S-H gels and the adsorption and transport properties of water molecules and ions within C-S-H gels, as studied through molecular dynamics simulations. This paper summarizes the results of the molecular dynamics-based adsorption transport properties of water molecules and ions in C-S-H gels. The deficiencies in the current study were analyzed, and the fundamental problems to be solved and further research directions were clarified to provide scientific references for revealing the structural properties of C-S-H gels using molecular dynamics.
Collapse
Affiliation(s)
- Xinjie Li
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yingfang Fan
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| | - Chang Wu
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lei Wang
- Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
2
|
Rezlerová E, Moučka F, Předota M, Lísal M. Structure and self-diffusivity of mixed-cation electrolytes between neutral and charged graphene sheets. J Chem Phys 2024; 160:094701. [PMID: 38426518 DOI: 10.1063/5.0188104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Graphene-based applications, such as supercapacitors or capacitive deionization, take place in an aqueous environment, and they benefit from molecular-level insights into the behavior of aqueous electrolyte solutions in single-digit graphene nanopores with a size comparable to a few molecular diameters. Under single-digit graphene nanoconfinement (smallest dimension <2 nm), water and ions behave drastically different than in the bulk. Most aqueous electrolytes in the graphene-based applications as well as in nature contain a mix of electrolytes. We study several prototypical aqueous mixed alkali-chloride electrolytes containing an equimolar fraction of Li/Na, Li/K, or Na/K cations confined between neutral and positively or negatively charged parallel graphene sheets. The strong hydration shell of small Li+ vs a larger Na+ or large K+ with weaker or weak hydration shells affects the interplay between the ions's propensity to hydrate or dehydrate under the graphene nanoconfinement and the strength of the ion-graphene interactions mediated by confinement-induced layered water. We perform molecular dynamics simulations of the confined mixed-cation electrolytes using the effectively polarizable force field for electrolyte-graphene systems and focused on a relation between the electrochemical adsorption and structural properties of the water molecules and ions and their diffusion behavior. The simulations show that the one-layer nanoslits have the biggest impact on the ions' adsorption and the water and ions' diffusion. The positively charged one-layer nanoslits only allow for Cl- adsorption and strengthen the intermolecular bonding, which along with the ultrathin confinement substantially reduces the water and Cl- diffusion. In contrast, the negatively charged one-layer nanoslits only allow for adsorption of weakly hydrated Na+ or K+ and substantially break up the non-covalent bond network, which leads to the enhancement of the water and Na+ or K+ diffusion up to or even above the bulk diffusion. In wider nanoslits, cations adsorb closer to the graphene surfaces than Cl-'s with preferential adsorption of a weakly hydrated cation over a strongly hydrated cation. The positive graphene charge has an intuitive effect on the adsorption of weakly hydrated Na+'s or K+'s and Cl-'s and a counterintuitive effect on the adsorption of strongly hydrated Li+'s. On the other hand, the negative surface charge has an intuitive effect on the adsorption of both types of cations and only mild intuitive or counterintuitive effects on the Cl- adsorption. The diffusion of water molecules and ions confined in the wider nanoslits is reduced with respect to the bulk diffusion, more for the positive graphene charge, which strengthened the intermolecular bonding, and less for the negative surface charge, which weakened the non-covalent bond network.
Collapse
Affiliation(s)
- Eliška Rezlerová
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, Ústí n. Lab., Czech Republic
| | - Filip Moučka
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, Ústí n. Lab., Czech Republic
| | - Milan Předota
- Department of Physics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Lísal
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, Ústí n. Lab., Czech Republic
| |
Collapse
|
3
|
Li D, Zhu J, Liu Q, Qi Q, Bai Z. Degradation of thermal stability and micromechanical properties of the C-S-H phase induced by ultra-confined water at elevated temperatures. Phys Chem Chem Phys 2023. [PMID: 38037879 DOI: 10.1039/d3cp03804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Water in the nanometer to micrometer-sized pores of calcium silicate hydrate (C-S-H) is essential for the binding process of cementitious materials. The quantity, location, and physical state of water in C-S-H pores under extreme conditions significantly influence the strength and durability of cementitious materials. The present study employed ReaxFF and molecular dynamics (MD) simulation to evaluate the effects of water ultra-confined in the nanopores on the structure, bonds, dynamics, and tensile mechanism of the C-S-H grains at elevated temperatures. The results indicate that the temperature elevation may interfere with the water molecule's hydrogen-bond network between the C-S-H grains, causing a notable nanometer-scale pore expansion. Simultaneously, the diffusion coefficient of water molecules confined in nanopores gradually increased, and their dynamic characteristics shifted from a glassy nature to free water. Additionally, high temperatures promoted hydrolysis reactions and the breakage of chemical bonds in the C-S-H framework, causing disintegration of the silicate skeleton and a decrease in the mechanical attributes of C-S-H. Moreover, the uniaxial tensile test at high temperatures revealed that the silicate chain groups in the C-S-H substrates underwent thermal curling. In contrast to interlayer-bound water, under the action of tension, water molecules in nanopores are viscous, forming water layers.
Collapse
Affiliation(s)
- Dongbo Li
- School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jing Zhu
- School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qinlong Liu
- Mechanical Experiment Center, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qinde Qi
- School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhentao Bai
- College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Rezlerová E, Moučka F, Předota M, Lísal M. Structure and self-diffusivity of alkali-halide electrolytes in neutral and charged graphene nanochannels. Phys Chem Chem Phys 2023; 25:21579-21594. [PMID: 37548441 DOI: 10.1039/d3cp03027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Understanding the microscopic behaviour of aqueous electrolyte solutions in graphene-based ultrathin nanochannels is important in nanofluidic applications such as water purification, fuel cells, and molecular sensing. Under extreme confinement (<2 nm), the properties of water and ions differ drastically from those in the bulk phase. We studied the structural and diffusion behaviour of prototypical aqueous solutions of electrolytes (LiCl, NaCl, and KCl) confined in both neutral and positively-, and negatively-charged graphene nanochannels. We performed molecular dynamics simulations of the solutions in the nanochannels with either one, two- or three-layer water structures using the effectively polarisable force field for graphene. We analysed the structure and intermolecular bond network of the confined solutions along with their relation to the self-diffusivity of water and ions. The simulations show that Na and K cations can more easily rearrange their solvation shells under the graphene nanoconfinement and adsorb on the graphene surfaces or dissolve in the confinement-induced layered water than the Li cation. The negative surface charge together with the presence of ions orient water molecules with hydrogens towards the graphene surfaces, which in turn weakens the intermolecular bond network. The one-layer nanochannels have the biggest effect on the water structure and intermolecular bonding as well as on the adsorption of ions with only co-ions entering these nanochannels. The self-diffusivity of confined water is strongly reduced with respect to the bulk water and decreases with diminishing nanochannel heights except for the negatively-charged one-layer nanochannel. The self-diffusivity of ions also decreases with the reducing the nanochannel heights except for the self-diffusivity of cations in the negatively-charged one-layer nanochannel, evidencing cooperative diffusion of confined water and ions. Due to the significant break-up of the intermolecular bond network in the negatively-charged one-layer nanochannel, self-diffusion coefficients of water and cations exceed those for the two- and three-layer nanochannels and become comparable to the bulk values.
Collapse
Affiliation(s)
- Eliška Rezlerová
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Ústín. Lab., Czech Republic
| | - Filip Moučka
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Ústín. Lab., Czech Republic
| | - Milan Předota
- Department of Physics, Faculty of Science, University of South Bohemia, České Budě jovice, Czech Republic
| | - Martin Lísal
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Ústín. Lab., Czech Republic
| |
Collapse
|
5
|
Hong F, Wang M, Dong B, Diao X, Zhang X, Pang K, Zhang Y, Hou D. Molecular Insight into the Pozzolanic Reaction of Metakaolin and Calcium Hydroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3601-3609. [PMID: 36848440 DOI: 10.1021/acs.langmuir.2c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The reaction mechanism of the pozzolanic reaction of metakaolin (MK) from the atomic point of view has not yet been explored. To explain the process and mechanism of the pozzolanic reaction from the atomic point of view, molecular insight into the pozzolanic reaction of MK and calcium hydroxide (CH) was analyzed through the reaction molecular dynamics (MD) simulation. The results show that the pozzolanic reaction of MK and CH can be essentially regarded as the CH decomposition and penetration into MK. Also, the structure evolution after the pozzolanic reaction shows that the water molecules cannot penetrate the MK structure till the participation of Ca2+ and OH- ions of CH. The Ca2+ and OH- ions have strong interaction with MK and drill into the MK structure, followed by the destruction of a part of the MK structure and water penetration. The final structure of CH removed by MK can be regarded as the precursor of the CASH gel structure.
Collapse
Affiliation(s)
- Fen Hong
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Biqin Dong
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoxiang Diao
- Tianjin Housing Group Construction Engineering General Contraction Co., Ltd., Tianjin 300000, China
| | | | - Kai Pang
- China Construction Port Group Co., Ltd., Qingdao 266033, China
| | - Yongmin Zhang
- China Construction Port Group Co., Ltd., Qingdao 266033, China
| | - Dongshuai Hou
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
6
|
Liu X, Bai X, Zhong W, Deng X, Liang T. Investigation for Carbonation Mechanism of Tobermorite 9 Å: A Combination of DFT and Ab Initio Molecular Dynamics Study. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaotong Liu
- School of Mechanics and Safety Engineering Zhengzhou University Zhengzhou 450001 China
| | - Xiaolin Bai
- School of Mechanics and Safety Engineering Zhengzhou University Zhengzhou 450001 China
| | - Wei Zhong
- School of Mechanics and Safety Engineering Zhengzhou University Zhengzhou 450001 China
| | - Xiangsheng Deng
- School of Mechanics and Safety Engineering Zhengzhou University Zhengzhou 450001 China
| | - Tianshui Liang
- School of Mechanics and Safety Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
7
|
Zhang R, Troya D, Madsen LA. Prolonged Association between Water Molecules under Hydrophobic Nanoconfinement. J Phys Chem B 2021; 125:13767-13777. [PMID: 34898212 DOI: 10.1021/acs.jpcb.1c06810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an investigation of the dynamics of water confined among rigid carbon rods and between parallel graphene sheets with molecular dynamics simulations. Diffusion coefficients, activation energy of diffusion, and residence-time correlation functions as a function of confinement geometry reveal a retardation of water dynamics under hydrophobic confinement compared to bulk water. In fact, water under various confinements possesses longer associations with its neighbors and exhibits diffusion dynamics characteristic of a lower temperature. Analysis of the residence-time correlation functions reveals long and short residence times, which we relate to the diffusion coefficient and activation energy of diffusion, respectively. Additional investigations reveal how the level of confining surface hydrophobicity affects water dynamics, further broadening our understanding of water diffusion inside diverse media. Overall, this study sheds light on the physical origin of retarded water dynamics under hydrophobic confinement and the close relationship between residence times and diffusion behavior.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A Madsen
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
9
|
Influence of Humidity on the Elastic Modulus and Axis Compressive Strength of Concrete in a Water Environment. MATERIALS 2020; 13:ma13245696. [PMID: 33327435 PMCID: PMC7764903 DOI: 10.3390/ma13245696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022]
Abstract
Concrete structures are often in different humidity conditions that have a significant impact on the elastic modulus of concrete, therefore, systematic research on the evolution of the law of concrete elastic modulus under different humidity conditions is needed. In this study, the variation laws of the water saturation of concrete specimens with strength grades C15, C20, and C30 were obtained, and then the influence laws of the water saturation on the concrete axial compressive strength were carried out, and the prediction model of elastic modulus of concrete with respect to water saturation was constructed. The results showed that the water saturation of concrete with strength grades C15, C20, and C30 increased with an extension of immersion time, and the water saturation showed an approximately linear rapid growth within three soaking hours, reaching 47.56%, 71.63%, and 47.29%, respectively. Note, the concrete reached saturation state when the soaking time was 240 h. The axial compressive strength with strength grades C15, C20, and C30 decreased with increased water saturation, and the axial compressive strength of saturated concrete decreased by 27.25%, 21.14%, and 20.76%, respectively, as compared with the dry state concrete. The elastic modulus of concrete with strength grades C15, C20, and C30 increased with increased water saturation, and the elastic modulus of saturated concrete was 1.18, 1.19, and 1.24 times higher than those of dry concrete, respectively.
Collapse
|
10
|
Tsimpanogiannis IN, Moultos OA, Franco LFM, Spera MBDM, Erdős M, Economou IG. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1511903] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ioannis N. Tsimpanogiannis
- Environmental Research Laboratory, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Luís F. M. Franco
- School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Ioannis G. Economou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Greece
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
11
|
Ho TA, Greathouse JA, Lee AS, Criscenti LJ. Enhanced Ion Adsorption on Mineral Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5926-5934. [PMID: 29746135 DOI: 10.1021/acs.langmuir.8b00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Classical molecular dynamics simulation was used to study the adsorption of Na+, Ca2+, Ba2+, and Cl- ions on gibbsite edge (1 0 0), basal (0 0 1), and nanoparticle (NP) surfaces. The gibbsite NP consists of both basal and edge surfaces. Simulation results indicate that Na+ and Cl- ions adsorb on both (1 0 0) and (0 0 1) surfaces as inner-sphere species (i.e., no water molecules between an ion and the surface). Outer-sphere Cl- ions (i.e., one water molecule between an ion and the surface) were also found on these surfaces. On the (1 0 0) edge, Ca2+ ions adsorb as inner-sphere and outer-sphere complexes, whereas on the (0 0 1) surface, outer-sphere Ca2+ ions are the dominant species. Ba2+ ions were found as inner-sphere and outer-sphere complexes on both surfaces. Calculated ion surface coverages indicate that, for all ions, surface coverages are always higher on the basal surface compared to those on the edge surface. More importantly, surface coverages for cations on the gibbsite NP are always higher than those calculated for the (1 0 0) and (0 0 1) surfaces. This enhanced ion adsorption behavior for the NP is due to the significant number of inner-sphere cations found at NP corners. Outer-sphere cations do not contribute to the enhanced surface coverage. In addition, there is no ion adsorption enhancement observed for the Cl- ion. Our work provides a molecular-scale understanding of the relative significance of ion adsorption onto gibbsite basal versus edge surfaces and demonstrates the corner effect on ion adsorption on NPs.
Collapse
Affiliation(s)
- Tuan A Ho
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Jeffery A Greathouse
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Andrew S Lee
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Louise J Criscenti
- Geochemistry Department , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
12
|
Molecular Dynamics Simulation of Water Confinement in Disordered Aluminosilicate Subnanopores. Sci Rep 2018; 8:3761. [PMID: 29491348 PMCID: PMC5830603 DOI: 10.1038/s41598-018-22015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022] Open
Abstract
The porous structure and mass transport characteristics of disordered silicate porous media were investigated via a geometry based analysis of water confined in the pores. Disordered silicate porous media were constructed to mimic the dissolution behavior of an alkali aluminoborosilicate glass, i.e., soluble Na and B were removed from the bulk glass, and then water molecules and Na were introduced into the pores to provide a complex porous structure filled with water. This modelling approach revealed large surface areas of disordered porous media. In addition, a number of isolated water molecules were observed in the pores, despite accessible porous connectivity. As the fraction of mobile water was approximately 1%, the main water dynamics corresponded to vibrational motion in a confined space. This significantly reduced water mobility was due to strong hydrogen-bonding water-surface interactions resulting from the large surface area. This original approach provides a method for predicting the porous structure and water transport characteristics of disordered silicate porous media.
Collapse
|
13
|
Hou D, Zhang Y, Yang T, Zhang J, Pei H, Zhang J, Jiang J, Li T. Molecular structure, dynamics, and mechanical behavior of sodium aluminosilicate hydrate (NASH) gel at elevated temperature: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:20695-20711. [DOI: 10.1039/c8cp03411g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Elevated temperature weakens the aluminosilicate framework, resulting in the reduction in the tensile failure strength, but an increase in the toughness.
Collapse
Affiliation(s)
- Dongshuai Hou
- Department of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- China
- Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone
| | - Yu Zhang
- Department of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- China
| | - Tiejun Yang
- Department of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- China
| | - Jinrui Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety
- Tianjin University
- Tianjin 300072
- China
| | - Huafu Pei
- Dalian University of Technology
- Dalian
- China
| | - Jinglin Zhang
- Department of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- China
| | - Jinyang Jiang
- Jiangsu Key Laboratory of Construction Materials
- School of Materials Science and Engineering
- Southeast University
- Nanjing 211189
- China
| | - Tao Li
- Department of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- China
| |
Collapse
|