1
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|
2
|
Yeh YQ, Su CJ, Wang CA, Lai YC, Tang CY, Di Z, Frielinghaus H, Su AC, Jeng US, Mou CY. Diatom-inspired self-assembly for silica thin sheets of perpendicular nanochannels. J Colloid Interface Sci 2021; 584:647-659. [PMID: 33198979 DOI: 10.1016/j.jcis.2020.10.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Multistage silicate self-organization into light-weight, high-strength, hierarchically patterned diatom frustules carries hints for innovative silica-based nanomaterials. With sodium silicate in a biomimetic sol-gel system templated by a tri-surfactant system of hexadecyltrimethylammonium bromide, sodium dodecylsulfate, and poly(oxyethylene-b-oxypropylene-b-oxyethylene) (P123), mesoporous silica nanochannel plates with perpendicular channel orientation are synthesized. The formation process, analogous to that of diatom frustules, is postulated to be directed by an oriented self-assembly of the block copolymer micelles shelled with charged catanionic surfactants upon silication. EXPERIMENTS The postulated formation process for the oriented silica nanochannel plates was investigated using time-resolved small-angle X-ray and neutron scattering (SAXS/SANS) and freeze fracture replication transmission electron microscopy (FFR-TEM). FINDINGS With fine-tuned molar ratios of the anionic, cationic, and nonionic surfactants, the catanionic combination and the nonionic copolymer form charged, prolate ternary micelles in aqueous solutions, which further develop into prototype monolayered micellar plates. The prolate shape and maximized surfactant adsorption of the complex micelles, revealed from combined SAXS/SANS analysis, are of critical importance in the subsequent micellar self-assembly upon silicate deposition. Time-resolved SAXS and FFR-TEM indicate that the silicate complex micelles coalesce laterally into the prototype micellar nanoplates, which further fuse with one another into large sheets of monolayered silicate micelles of in-plane lamellar packing. Upon silica polymerization, the in-plane lamellar packing of the micelles further transforms to 2D hexagonal packing of vertically oriented silicate channels. The unveiled structural features and their evolution not only elucidate the previously unresolved self-assembly process of through-thickness silica nanochannels but also open a new line of research mimicking free-standing frustules of diatoms.
Collapse
Affiliation(s)
- Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan; Department of Chemistry and Center of Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Chen-An Wang
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Ying-Chu Lai
- Department of Chemistry and Center of Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yuan Tang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Zhenyu Di
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS, Outstation at MLZ, Garching 85747, Germany
| | - Henrich Frielinghaus
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS, Outstation at MLZ, Garching 85747, Germany
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yuan Mou
- Department of Chemistry and Center of Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Schmitt J, Zeeuw JJ, Plomp J, Bouwman WG, Washington AL, Dalgliesh RM, Duif CP, Thijs MA, Li F, Pynn R, Parnell SR, Edler KJ. Mesoporous Silica Formation Mechanisms Probed Using Combined Spin-Echo Modulated Small-Angle Neutron Scattering (SEMSANS) and Small-Angle Neutron Scattering (SANS). ACS APPLIED MATERIALS & INTERFACES 2020; 12:28461-28473. [PMID: 32330001 DOI: 10.1021/acsami.0c03287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The initial formation stages of surfactant-templated silica thin films which grow at the air-water interface were studied using combined spin-echo modulated small-angle neutron scattering (SEMSANS) and small-angle neutron scattering (SANS). The films are formed from either a cationic surfactant or nonionic surfactant (C16EO8) in a dilute acidic solution by the addition of tetramethoxysilane. Previous work has suggested a two stage formation mechanism with mesostructured particle formation in the bulk solution driving film formation at the solution surface. From the SEMSANS data, it is possible to pinpoint accurately the time associated with the formation of large particles in solution that go on to form the film and to show their emergence is concomitant with the appearance of Bragg peaks in the SANS pattern, associated with the two-dimensional hexagonal order. The combination of SANS and SEMSANS allows a complete depiction of the steps of the synthesis that occur in the subphase.
Collapse
Affiliation(s)
- Julien Schmitt
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, Bath, United Kingdom
| | - Jan Joost Zeeuw
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, Bath, United Kingdom
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Jeroen Plomp
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Wim G Bouwman
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Adam L Washington
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Chris P Duif
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Michel A Thijs
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Fankang Li
- Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Roger Pynn
- Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Centre for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408, United States
| | - Steven R Parnell
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, Bath, United Kingdom
| |
Collapse
|
4
|
Fractal evolution of dual pH- and temperature-responsive P(NIPAM-co-AA)@BMMs with bimodal mesoporous silica core and coated-copolymer shell during drug delivery procedure via SAXS characterization. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
5
|
Schmitt J, Hartwig C, Crassous JJ, Mihut AM, Schurtenberger P, Alfredsson V. Anisotropic mesoporous silica/microgel core–shell responsive particles. RSC Adv 2020; 10:25393-25401. [PMID: 35517484 PMCID: PMC9055282 DOI: 10.1039/d0ra02278k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hybrid anisotropic microgels were synthesised using mesoporous silica as core particles. By finely controlling the synthesis conditions, the latter can be obtained with different shapes such as platelets, primary particles or rods. Using the core particles as seeds for precipitation polymerisation, a crosslinked poly(N-isopropylacrylamide) (PNIPAM) microgel shell could be grown at the surface, conferring additional thermo-responsive properties. The different particles were characterised using scattering and imaging techniques. Small angle X-ray scattering (SAXS) was employed to identify the shape and porous organisation of the core particles and dynamic light scattering (DLS) to determine the swelling behaviour of the hybrid microgels. In addition, cryogenic transmission electron microscopy (cryo-TEM) imaging of the hybrids confirms the different morphologies as well as the presence of the microgel network and the core–shell conformation. Finally, the response of the particles to an alternating electric field is demonstrated for hybrid rod-shaped microgels in situ using confocal laser scanning microscopy (CLSM). Hybrid anisotropic microgels with different morphologies were prepared using mesoporous silica particles as core and PNIPAM as shell. The shell thickness d and aspect ratio ρ were characterised notably via cryo-TEM (left) and DLS (right).![]()
Collapse
Affiliation(s)
- Julien Schmitt
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Caroline Hartwig
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Jérôme J. Crassous
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Adriana M. Mihut
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Peter Schurtenberger
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Viveka Alfredsson
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| |
Collapse
|