1
|
Quoc TT, Dang PN, Trong DN, Long VC, Ţălu Ş. Molecular dynamics study influence of factors on the structure, phase transition, and crystallization of the Ag1-xAux, x = 0.25, 0.5, 0.75 alloy. MATERIALS TODAY COMMUNICATIONS 2023; 37:107119. [DOI: 10.1016/j.mtcomm.2023.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
|
2
|
Sundarapandi M, Shanmugam S, Ramaraj R. Synthesis of Different Nano‐layer Shells (Mono‐, Bi‐, and Alloy Layers)‐Coated Gold Spherical Nanoparticles Core for Catalysis. ChemistrySelect 2023. [DOI: 10.1002/slct.202203389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Manickam Sundarapandi
- School of Chemistry, Centre for Photoelectrochemistry Madurai Kamaraj University Madurai 625021 India
| | - Sivakumar Shanmugam
- Department of Organic Chemistry, School of Chemistry Madurai Kamaraj University Madurai 625021 India
| | - Ramasamy Ramaraj
- School of Chemistry, Centre for Photoelectrochemistry Madurai Kamaraj University Madurai 625021 India
| |
Collapse
|
3
|
Ramezanzadeh S, Akbarzadeh H, Mehrjouei E, Shamkhali AN, Abbaspour M, Salemi S. Yolk-shell nanoparticles with different cores: A molecular dynamics study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
He Z, Zhu J, Li X, Weng GJ, Li JJ, Zhao JW. Surface etching-dependent geometry tailoring and multi-spectral information of Au@AuAg yolk-shell nanostructure with asymmetrical pyramidal core: The application in Co 2+ determination. J Colloid Interface Sci 2022; 625:340-353. [PMID: 35717848 DOI: 10.1016/j.jcis.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 10/31/2022]
Abstract
In this paper, a novel Au@AuAg yolk-shell heterogeneous nanostructure is designed as plasmonic spectroscopic sensor based on surface etching for ultrasensitive detection of trace cobalt ions (Co2+). Due to the surface diffusion of gold atoms, the Ag at one end of the core gold nanobipyramids (Au NBPs) is retained, and Au@AuAg yolk-shell nanostructure with asymmetric core is prepared. The alloy shell is coupled to Au NBPs and the interface of asymmetric Ag respectively, the two local surface plasmon resonance bands will have obvious reverse changes depending on the surface morphology of the shell. By using this distinct plasmon response generated by Co2+ induced surface etching, which is driven by discrepancy of double-peaks, a sensing method has been established to realize multi-information spectral detection of Co2+. There is a good linear relationship between the intensity ratio and the Co2+ concentration in the range of 1-100 nM, in which the limit of detection is 0.2 nM. This method further improves the sensing capability by combining multiple pieces of strongly changing spectral information, and demonstrates great advantages and potential of Au@AuAg yolk-shell heterogeneous nanostructure as a multi-information plasmonic sensor based on etched shell surface for trace detection.
Collapse
Affiliation(s)
- Zhao He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin. Mikrochim Acta 2022; 189:47. [PMID: 34988714 DOI: 10.1007/s00604-021-05158-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
An immunoassay strategy has been developed based on nanomotor-assisted electrochemical measurements for simple and sensitive detection of immunoglobulin (IgG). The self-propelled Fe3O4@SiO2/Pt nanomotors were designed to label primary antibodies IgG (nanomotor-label) for the "on-the-fly" binding of the immune-protein. The core shell Au@Ag nanocubes (Au@Ag NCs) were used as labels of secondary antibodies (Au@Ag NCs-Ab2) to amplify electrochemical signal related to antigen concentration derived from the oxidation of Ag. The self-propelled nanomotors autonomously move in the solution to cruise and capture IgG and Au@Ag NCs-Ab2, resulting in the self-assembly of sandwich immune-complex. Finally, the immune-complex with magnetism can be transferred and modified on the electrode for the detection of IgG via differential pulse voltammetry. The self-propelled motion of the nanomotor-label obviates common procedures for the self-assembly of sandwich immunosensors to achieve satisfactory analysis results. With advantages of automation and miniaturization, the strategy based on self-propelled nanomotor-labels explores an effective method for the simple and sensitive detection of immune-protein in biosensing.
Collapse
|
6
|
Zhu J, Zhang S, Weng GJ, Li JJ, Zhao JW. Spiky yolk-shell AuAg bimetallic nanorods with uniform interior gap for the SERS detection of thiram residues in fruit juice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120108. [PMID: 34198118 DOI: 10.1016/j.saa.2021.120108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
By using gold nanorods with silver coating as the sacrificial templates, we prepared spiky yolk-shell AuAg bimetallic nanorods with uniform interior gap via galvanic replacement reaction. The length and number of Au tips of the spiky yolk-shell AuAg nanorods can be tuned simultaneously by altering HAuCl4 volume. The influence of HAuCl4 volume and the sliver layer thickness on the SERS activity of spiky yolk-shell AuAg nanorods are studied. When the sliver layer is thin, the interior gap has not been shielded completely and the outer shell has obvious tips, thus the surface-enhanced Raman scattering (SERS) activity has the strongest enhancement with an enhancement factor (EF) of 4.9 × 105. The spiky yolk-shell AuAg nanorods with the strongest SERS activity are used as SERS substrates to detect thiram. The results demonstrate that the SERS intensity increases linearly with the logarithmic concentration of thiram in the range of 10-3 M to 10-7 M. The detection limit is as low as 97 nM, which is lower than the maximum pesticide residue limit (29 µM) in fruits stipulated by the US Environmental Protection Agency (EPA). Therefore, the spiky yolk-shell AuAg bimetallic nanorods have important practical application value in pesticide detection.
Collapse
Affiliation(s)
- Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuang Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
7
|
Zhou T, Ding SJ, Wu ZY, Yang DJ, Zhou LN, Zhao ZR, Ma L, Wang W, Ma S, Wang SM, Zou JN, Zhou L, Wang QQ. Synthesis of AuAg/Ag/Au open nanoshells with optimized magnetic plasmon resonance and broken symmetry for enhancing second-harmonic generation. NANOSCALE 2021; 13:19527-19536. [PMID: 34806104 DOI: 10.1039/d1nr04814g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cooperation of magnetic and electric plasmon resonances in cup-shaped metallic nanostructures exhibits significant capability for second-harmonic generation (SHG) enhancement. Herein, we report an approach for synthesizing Au open nanoshells with tunable numbers and sizes of openings on a template of six-pointed PbS nanostars. The morphology of Au nanoshells is controlled by adjusting the amount of HAuCl4, and the characteristic shapes of pointed nanocaps, open nanoshells, and hollow nanostars are obtained. Owing to the collaboration of electric and magnetic plasmon resonance modes, the Au nanoshells exhibit significantly broadened and highly tunable optical responses. Furthermore, the morphology-dependent SHG of the Au nanoshells shows two maximal SHG intensities, corresponding to four-opening and one-opening Au nanoshells with appropriate opening sizes. Ag/Au and AuAg/Ag/Au open nanoshells were further investigated to achieve enhanced SHG. By adjusting the thickness of the Ag shell, the SHG intensity of Ag/Au open nanoshells reaches a maximum due to the gradient field at the AuAg bimetallic interface. After replacing the Ag shells with Au shells, the SHG intensity of AuAg/Ag/Au open nanoshells reaches a maximum due to further symmetry breaking. These findings provide a strategy to prepare colloidal metal nanocrystals with prospective applications ranging from nonlinear photonic nanodevices to biospectroscopy and photocatalysis.
Collapse
Affiliation(s)
- Tao Zhou
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Zhi-Yong Wu
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Da-Jie Yang
- Mathematics and Physics Department, North China Electric Power, University, Beijing 102206, China
| | - Li-Na Zhou
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Zhi-Rui Zhao
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Wei Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Song Ma
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Si-Man Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Jia-Nan Zou
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Li Zhou
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Qu-Quan Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Mikrochim Acta 2021; 188:309. [PMID: 34453188 DOI: 10.1007/s00604-021-04968-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Platinum-containing nanozymes with peroxidase-mimicking activity (PMA) have found a broad application in bioanalytical methods and are potentially able to compete with enzymes as the labels. However, traditionally used methods for the synthesis of nanozymes result in only a small fraction of surface-exposed Pt atoms, which participate in catalysis. To overcome this limitation, we propose a new approach for the synthesis of nanozymes with the efficient dispersion of Pt atoms on particles' surfaces. The synthesis of nanozymes includes three steps: the synthesis of gold nanoparticles (Au NPs), the overgrowth of a silver layer over Au NPs (Au@Ag NPs, 6 types of NPs with different thicknesses of Ag shell), and the galvanic replacement of silver with PtCl62- leading to the formation of trimetallic Au@Ag-Pt NPs with uniformly deposited catalytic sites and high Pt-utilization efficiency. Au@Ag-Pt NPs (23 types of NPs with different concentrations of Pt) with various sizes, morphology, optical properties, and PMA were synthesized and comparatively tested. Using energy-dispersive spectroscopy mapping, we confirm the formation of core@shell Au@Ag NPs and dispersion of surface-exposed Pt. The selected Au@Ag-Pt NPs were conjugated with monoclonal antibodies and used as the colorimetric and catalytic labels in lateral flow immunoassay of the inflammation biomarker: C-reactive protein (CRP). The colorimetric signal enhancement was achieved by the oxidation of 3,3'-diaminobenzidine by H2O2 catalyzed by Au@Ag-Pt NPs directly on the test strip. The use of Au@Ag-Pt NPs as the catalytic label produces a 65-fold lower limit of CRP detection in serum (15 pg mL-1) compared with Au NPs and ensures the lowest limit of detection for equipment-free lateral flow immunoassays. The assay shows a high correlation with data of enzyme-linked immunosorbent assay (R2 = 0.986) and high recovery (83.7-116.2%) in serum and plasma. The assay retains all the benefits of lateral flow immunoassay as a point-of-care method.
Collapse
|
9
|
Li D, Tan R, Mi X, Fang C, Tu Y. An electrochemiluminescent biosensor for noninvasive glucose detection based on cluster-like AuAg hollowed-nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Xu J, Yun Q, Wang C, Li M, Cheng S, Ruan Q, Zhu X, Kan C. Gold nanobipyramid-embedded silver-platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions. NANOSCALE 2020; 12:23663-23672. [PMID: 33216083 DOI: 10.1039/d0nr03315d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal hollow nanostructures based on gold nanobipyramids (Au NBPs) are of great interest for the combination of tunable plasmonic resonances and excellent physicochemical properties. Based on the core-shell Au NBP@Ag nanorods with desired sizes, herein we reported the synthesis and growth mechanism of Au NBP-embedded AgPt hollow nanostructures with tunable thickness and size. The Au NBP@AgPt nanoframes were obtained at lower temperature, in which cetyltrimethylammonium bromine (CTAB) was applied as a capping agent to guide the deposition of Pt atoms on the edges and corners of Au NBPs@Ag nanorods. With the increase of reaction temperature, the Au NBP@AgPt nanoframes convert into nanocages due to the atomic migration to the surfaces. The surface plasmon resonance of the Au NBP@AgPt hollow nanostructure shifts from red to blue, which is ascribed to the changes in coverage area and location site of the AgPt alloy. When CTAB was replaced by cetyltrimethylammonium chloride (CTAC), Au NBP@AgPt nanocages dominate the product. The surface roughness and thickness of the nanocages can be controlled by the temperature and the amount of Pt precursor. Moreover, Au NBP@AgPt hollow nanostructures show excellent surface-enhanced Raman scattering and exhibit remarkable stability in harsh environments. Taking into account the advantages of the plasmonic property (Au NBPs), catalytic activity (Pt) and plasmon-enhanced signal (Ag), the Au NBP@AgPt hollow nanostructures are a promising candidate for technological applications in catalytic reactions.
Collapse
Affiliation(s)
- Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu J, Zhang S, Weng GJ, Li JJ, Zhao JW. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118343. [PMID: 32302959 DOI: 10.1016/j.saa.2020.118343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Au@AuAg yolk-shell nanorods with tunable and uniform interior gap were synthesized through galvanic replacement reaction, where Au@Ag core-shell nanorods served as sacrificial templates and HAuCl4 solution served as reductant. The effects of HAuCl4, Ag shell thickness and aspect ratio (AR) of Au nanorods on the morphology of Au@AuAg yolk-shell nanorods had been investigated systemically. The results clearly indicated that AuAg alloy shell thickness of Au@AuAg yolk-shell nanorods could be increased from 3.6 to 10.0 nm by varying the amount of HAuCl4. Meanwhile, the shape of AuAg alloy shell could be tuned by changing the shape of Ag coating. With the increasing of Ag coating thickness, the interior gap could be finely tuned in the range from 2.6 to 8.1 nm. The uniformity of interior gap could be improved by increasing the AR of Au nanorods. All these tunable geometries can further affect the plasmonic spectral properties of Au@AuAg yolk-shell nanorods. Because of the appearance of interior gap, the longitudinal localized surface plasmon resonance (LSPR) peak of Au@AuAg yolk-shell nanorods was located between that of bare Au nanorods and Au@Ag core-shell nanorods without interior gap. The increase of outer AuAg shell thickness can weaken the coupling between the inner and outer surface of the AuAg shell and lead to the decrease of AR, so the transverse and longitudinal LSPR bands gather together. The decrease of Ag coating thickness can enhance the coupling between inner Au nanorod and outer AuAg shell, which results in the red shift of the longitudinal LSPR band. This paper provides a method for studying the plasmonic coupling between two metal surfaces with a metal layer or a dielectric layer, which is also a new approach for regulating the plasmonic spectral properties of bimetallic nanoparticles. The controllability of Au@AuAg yolk-shell nanorods in both the interior gap and outer alloy shells makes them have potential applications in biomedicine, catalysis, nanoreactors, and energy storage.
Collapse
Affiliation(s)
- Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Shuang Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
12
|
Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosens Bioelectron 2019; 142:111580. [DOI: 10.1016/j.bios.2019.111580] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 11/18/2022]
|
13
|
Song H, Yang Y, Geng J, Gu Z, Zou J, Yu C. Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801564. [PMID: 30160340 DOI: 10.1002/adma.201801564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Innovations in nanofabrication have expedited advances in hollow-structured nanomaterials with increasing complexity, which, at the same time, set challenges for the precise determination of their intriguing and complicated 3D configurations. Conventional transmission electron microscopy (TEM) analysis typically yields 2D projections of 3D objects, which in some cases is insufficient to reflect the genuine architectures of these 3D nano-objects, providing misleading information. Advanced analytical approaches such as focused ion beam (FIB) and ultramicrotomy enable the real slicing of nanomaterials, realizing the direct observation of inner structures but with limited spatial discrimination. Electron tomography (ET) is a technique that retrieves spatial information from a series of 2D electron projections at different tilt angles. As a unique and powerful tool kit, this technique has experienced great advances in its application in materials science, resolving the intricate 3D nanostructures. Here, the exceptional capability of the ET technique in the structural, chemical, and quantitative analysis of hollow-structured nanomaterials is discussed in detail. The distinct information derived from ET analysis is highlighted and compared with conventional analysis methods. Along with the advances in microscopy technologies, the state-of-the-art ET technique offers great opportunities and promise in the development of hollow nanomaterials.
Collapse
Affiliation(s)
- Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Geng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
14
|
Sheng J, Chen J, Kang J, Yu Y, Yan N, Fu X, Sun R, Wong C. Octahedral Cu
2
O@Co(OH)
2
Nanocages with Hierarchical Flake‐Like Walls and Yolk‐Shell Structures for Enhanced Electrocatalytic Activity. ChemCatChem 2019. [DOI: 10.1002/cctc.201900036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiali Sheng
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P. R. China
- Nano Science and Technology InstituteUniversity of Science and Technology of China Suzhou 215123 P. R. China
| | - Jiahui Chen
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Jiahui Kang
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Yan Yu
- Nano Science and Technology InstituteUniversity of Science and Technology of China Suzhou 215123 P. R. China
| | - Ning Yan
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam WX Amsterdam 1012 The Netherlands
| | - Xian‐Zhu Fu
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P. R. China
- College of Materials Science and EngineeringShenzhen University Shenzhen 518055 P. R. China
| | - Rong Sun
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Ching‐Ping Wong
- School of Materials Science and EngineeringGeorgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
15
|
Qin Y, Lu Y, Pan W, Yu D, Zhou J. One-pot synthesis of hollow hydrangea Au nanoparticles as a dual catalyst with SERS activity for in situ monitoring of a reduction reaction. RSC Adv 2019; 9:10314-10319. [PMID: 35520936 PMCID: PMC9062310 DOI: 10.1039/c9ra00733d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022] Open
Abstract
The controlled synthesis of metallic nanomaterials has attracted the interest of many researchers due to their shape-dependent physical and chemical properties. However, most of the synthesized nanocrystals cannot be combined with spectroscopy to measure the reaction kinetics, thus limiting their use in monitoring the catalytic reaction process to elucidate its mechanism. As a powerful analytical tool, surface-enhanced Raman spectroscopy (SERS) can be used to achieve in situ monitoring of catalytic reactions by developing bifunctional metal nanocrystals with both SERS and catalytic activities. Herein, we have developed a simple one-pot synthesis method for the large-scale and size-controllable preparation of highly rough hydrangea Au hollow nanoparticles. The growth mechanism of flower-like Au hollow nanostructures was also discussed. The hollow nanostructure with a 3D hierarchical flower shell combines the advantages of hollow nanostructure and hierarchical nanostructure, which possess high SERS activity and good catalytic activity simultaneously. Furthermore, the hydrangea Au hollow crystals were used as a bifunctional nanocatalyst for in situ monitoring of the reduction reaction of 4-nitrothiophenol to the 4-aminothiophenol.
Collapse
Affiliation(s)
- Yazhou Qin
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Yuxiang Lu
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Wufan Pan
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Dongdong Yu
- Hospital of Zhejiang University, Zhejiang University Hangzhou 310027 China
| | - Jianguang Zhou
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
16
|
Li J, Zhang G, Wang J, Maksymov IS, Greentree AD, Hu J, Shen A, Wang Y, Trau M. Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32526-32535. [PMID: 30168708 DOI: 10.1021/acsami.8b10112] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an important, highly sensitive technique for chemical and biological analysis, which is critically dependent upon high-performance metallic substrates. Anisotropic gold (Au)-silver (Ag) alloy nanoboxes are attractive SERS substrates because of the greatly enhanced Raman signals from the strong electromagnetic fields on the sharp corners. Yet, the routine approach of Au-Ag alloy nanobox synthesis is still challenging because of the complicated procedures and use of biologically/environmentally unfriendly reagents. To facilitate the usage of Au-Ag alloy nanoboxes for broad SERS applications, we propose a facile green strategy to synthesize Au-Ag alloy nanoboxes with superior single-particle SERS sensitivity. Our novel straightforward strategy involves HAuCl4 and AgNO3 reduction by ascorbic acid, which is achieved in an aqueous one-pot reaction at ambient temperature. Significantly, the surfaces of the prepared Au-Ag alloy nanoboxes are judiciously designed to introduce nanodots, generating numerous "hot spots" for high Raman signal enhancement as indicated by rigorous numerical simulations. By combining scanning electron microscopy and Raman mapping images, we demonstrate the application of Au-Ag alloy nanoboxes for single-particle sensing SERS activity. The as-prepared Au-Ag alloy nanoboxes are expected to facilitate their further applications in quantitative and ultrasensitive SERS detection.
Collapse
Affiliation(s)
| | - Guannan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | | | - Ivan S Maksymov
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, School of Science , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Andrew D Greentree
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, School of Science , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Jiming Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Aiguo Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Yuling Wang
- Department of Molecular Sciences, Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering , Macquarie University , Sydney , New South Wales 2109 , Australia
| | | |
Collapse
|
17
|
Wen Y, Ren F, Bai T, Xu H, Du Y. Facile construction of trimetallic PtAuRu nanostructures with highly porous features and perpendicular pore channels as enhanced formic acid catalysts. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Akbarzadeh H, Abbaspour M, Mehrjouei E, Ramezanzadeh S. Ag–Au nanoparticles encapsulated inside porous hollow carbon nanospheres: a molecular dynamics study. NEW J CHEM 2018. [DOI: 10.1039/c8nj01857j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have simulated bare Ag/Au nanoclusters and Ag/Au nanoclusters encapsulated into hollow carbon spheres (AgAu@C) with various structures (core–shell, hollow core–shell, rattle core–shell, and alloy nanoclusters) from 300 to 700 K.
Collapse
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry
- Faculty of Basic Sciences
- Hakim Sabzevari University
- 96179-76487 Sabzevar
- Iran
| | - Mohsen Abbaspour
- Department of Chemistry
- Faculty of Basic Sciences
- Hakim Sabzevari University
- 96179-76487 Sabzevar
- Iran
| | - Esmat Mehrjouei
- Department of Chemistry
- Faculty of Basic Sciences
- Hakim Sabzevari University
- 96179-76487 Sabzevar
- Iran
| | - Samira Ramezanzadeh
- Department of Chemistry
- Faculty of Basic Sciences
- Hakim Sabzevari University
- 96179-76487 Sabzevar
- Iran
| |
Collapse
|
19
|
Akbarzadeh H, Mehrjouei E, Shamkhali AN, Abbaspour M, Salemi S, Ramezanzadeh S. Au@void@AgAu Yolk-Shell Nanoparticles with Dominant Strain Effects: A Molecular Dynamics Simulation. J Phys Chem Lett 2017; 8:5064-5068. [PMID: 28960993 DOI: 10.1021/acs.jpclett.7b02310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Au@void@AgAu yolk-shell nanoparticles with different morphologies were studied by classical molecular dynamics simulation. The results indicated that all of simulated yolk-shell nanoclusters with ∼3.8 nm size and different morphologies are unstable at room temperature, and collapse of the shell atoms into the void space completely fills it and creates more stable Au@AgAu core-shell structures. Also, it was observed that thermodynamic stabilities of the created core-shell structures strongly depend on the morphology of nanocluster, for which competition between strain and surface energy effects plays the key role in this phenomenon. Within this competition, strain effect is dominant and helps the stability of the created core-shell structure. Herein, the icosahedral nanocluster with the lowest strain effect exhibits the highest thermodynamic stability. By comparing the simulation results with experimental data, it was concluded that the essential factor that controls the stability of these nanoparticles is their size.
Collapse
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili , 56199-11367 Ardabil, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Sirous Salemi
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| | - Samira Ramezanzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179-76487 Sabzevar, Iran
| |
Collapse
|
20
|
Xu H, Wang J, Yan B, Zhang K, Li S, Wang C, Shiraishi Y, Du Y, Yang P. Hollow Au xAg/Au core/shell nanospheres as efficient catalysts for electrooxidation of liquid fuels. NANOSCALE 2017; 9:12996-13003. [PMID: 28832040 DOI: 10.1039/c7nr04409g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One plausible approach to endow nanocrystals with both enhanced catalytic activity and stability for the electrooxidation of liquid fuels is to chemically control the crystal structures of nanoparticles. To date, core-shell and alloy structures have been demonstrated to offer generally two precious opportunities to design highly efficient nanocatalysts for the electrooxidation reaction of organic molecules. We herein combine these two advantages and develop a general method to successfully synthesize hollow AuxAg/Au core/shell nanospheres with a high yield approaching 100% via a combined seed mediated and galvanic replacement method. The results from the electrochemical measurements have revealed that this as-obtained hollow AuxAg/Au core/shell nanosphere exhibited considerably high electrocatalytic performance towards ethylene glycol and glycerol oxidation with mass activity of 4585 and 3486 mA mgAu-1, which were 5.3- and 5.8-fold higher than that of pure Au. We trust this strategy may be extended to the syntheses of other multimetallic nanocatalysts with such fascinating nanostructures and the as-obtained hollow AuxAg/Au core/shell nanospheres can be well applied to serve as highly desirable anode catalysts for the electrooxidation of ethylene glycol and glycerol.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Akbarzadeh H, Mehrjouei E, Shamkhali AN. Au@Void@Ag Yolk-Shell Nanoclusters Visited by Molecular Dynamics Simulation: The Effects of Structural Factors on Thermodynamic Stability. J Phys Chem Lett 2017; 8:2990-2998. [PMID: 28618220 DOI: 10.1021/acs.jpclett.7b00978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Au@void@Ag yolk-shell nanoclusters were studied by molecular dynamics simulation in order to study the effects of core and shell sizes on their thermodynamic stability and structural transformation. The results demonstrated that all of simulated nanoclusters with different core and shell sizes are unstable at temperatures lower than 350 K in such a way that Ag atoms are collapsed into the void space and fill it, which leads to creation of a more stable core-shell morphology, and at the melting point, only core-shell structures with altered thickness of the shell exist. Also, at higher temperatures, Au atoms tend to migrate toward the surface, and an increase of both the core and shell sizes leads to an increase of the thermodynamic stability. Moreover, a Au147@void@Ag252 nanocluster with the largest core and shell and minimum void space exhibited the most thermodynamic stability and highest melting point. Generally, the core and shell sizes affect the stability and thermal behavior of yolk-shell nanoclusters cooperatively.
Collapse
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179- 76487 Sabzevar, Iran
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University , 96179- 76487 Sabzevar, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili , 56199-11367 Ardabil, Iran
| |
Collapse
|
22
|
Londoño-Calderon A, Ponce A, Santiago U, Mejia S, José-Yacamán M. Controlling the Number of Atoms on Catalytic Metallic Clusters. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2017. [DOI: 10.1016/b978-0-12-805090-3.00006-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|