1
|
Zhang S, Zhao B, Zhang X, Wu F, Zhao Q. The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2911. [PMID: 37999265 PMCID: PMC10675538 DOI: 10.3390/nano13222911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Due to activities like mining and smelting, lead (Pb) enters the atmosphere in various forms in coarse and fine particles. It enters plants mainly through leaves, and goes up the food chain. In this study, PbXn (nano-PbS, mic-PbO and PbCl2) was applied to eggplant (Solanum melongena L.) leaves, and 379 differential metabolites were identified and analyzed in eggplant leaves using liquid chromatography-mass spectrometry. Multivariate statistical analysis revealed that all three Pb treatments significantly altered the metabolite profile. Compared with nano-PbS, mic-PbO and PbCl2 induced more identical metabolite changes. However, the alterations in metabolites related to the TCA cycle and pyrimidine metabolism, such as succinic acid, citric acid and cytidine, were specific to PbCl2. The number of differential metabolites induced by mic-PbO and PbCl2 was three times that of nano-PbS, even though the amount of nano-PbS absorbed by leaves was ten times that of PbO and seven times that of PbCl2. This suggests that the metabolic response of eggplant leaves to Pb is influenced by both concentration and form. This study enhances the current understanding of plants' metabolic response to Pb, and demonstrates that the metabolomics map provides a more comprehensive view of a plant's response to specific metals.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Bing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
Applications of molecular dynamics simulation in nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
3
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
4
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Fornaguera C, Castells-Sala C, Borrós S. Unraveling Polymeric Nanoparticles Cell Uptake Pathways: Two Decades Working to Understand Nanoparticles Journey to Improve Gene Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1288:117-138. [PMID: 31916235 DOI: 10.1007/5584_2019_467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymeric nanoparticles have aroused an increasing interest in the last decades as novel advanced delivery systems to improve the treatment of many diseases. Hard work has been performed worldwide designing and developing polymeric nanoparticles using different building blocks, which target specific cell types, trying to avoid bioaccumulation and degradation pathways. The main handicap of the design is to understand the final fate and the journey that the nanoparticle will follow, which is intimately ligated with the chemical and physical properties of the nanoparticles themselves and specific factors of the targeted cells. Although the huge number of published scientific articles regarding polymeric nanoparticles for biomedical applications, their use in clinics is still limited. This fact could be explained by the limited data reporting the interaction of the huge diversity of polymeric nanoparticles with cells. This knowledge is essential to understand nanoparticle uptake and trafficking inside cells to the subcellular target structure.In this chapter, we aim to contribute to this field of knowledge by: (1) summarizing the polymeric nanoparticles properties and cellular factors that influence nanoparticle endocytosis and (2) reviewing the endocytic pathways classified as a function of nanoparticle size and as a function of the receptor playing a role. The revision of previously reported endocytic pathways for particular polymeric nanoparticles could facilitate scientist involved in this field to easily delineate efficient delivery systems based on polymeric nanoparticles.
Collapse
Affiliation(s)
- C Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain.
| | - C Castells-Sala
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - S Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
6
|
Progress in ligand design for monolayer-protected nanoparticles for nanobio interfaces. Biointerphases 2018; 13:06D502. [PMID: 30463411 DOI: 10.1116/1.5044381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ligand-functionalized inorganic nanoparticles, also known as monolayer-protected nanoparticles, offer great potential as vehicles for in vivo delivery of drugs, genes, and other therapeutics. These nanoparticles offer highly customizable chemistries independent of the size, shape, and functionality imparted by the inorganic core. Their success as drug delivery agents depends on their interaction with three major classes of biomolecules: nucleic acids, proteins, and membranes. Here, the authors discuss recent advances and open questions in the field of nanoparticle ligand design for nanomedicine, with a focus on atomic-scale interactions with biomolecules. While the importance of charge and hydrophobicity of ligands for biocompatibility and cell internalization has been demonstrated, ligand length, flexibility, branchedness, and other properties also influence the properties of nanoparticles. However, a comprehensive understanding of ligand design principles lies in the cost associated with synthesizing and characterizing diverse ligand chemistries and the ability to carefully assess the structural integrity of biomolecules upon interactions with nanoparticles.
Collapse
|
7
|
Nademi Y, Tang T, Uludağ H. Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration. NANOSCALE 2018; 10:17671-17682. [PMID: 30206609 DOI: 10.1039/c8nr04287j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell entry of polynucleotide-based therapeutic agents can be facilitated by nanoparticle (NP) mediated delivery. In this work, using steered molecular dynamics simulations, we simulated the membrane penetration process of a NP formed by 2 short interfering RNA (siRNA) and 6 polyethylenimine (PEI) molecules. To the best of our knowledge, this is the first set of simulations that explore the direct penetration of an siRNA/PEI NP through a membrane at an all-atom scale. Three types of PEI molecules were used for NP formation: a native PEI, a PEI modified with caprylic acids and a PEI modified with linoleic acids. We found that hydrogen bond formation between the PEIs and the membrane did not lead to instability of the siRNA/PEI NPs during the internalization process. Instead, our results suggested adoption of a "self-protecting" configuration by the siRNA/PEI NP during membrane penetration, where the siRNA/PEI NP becomes more compact and siRNAs become aligned, leading to more stable configurations while detaching from the membrane. The siRNA/PEI NP modified with linoleic acid showed the smallest structural change due to its strong intra-particle lipid associations and the resulting rigidity, while NP modified with caprylic acid showed the largest structural changes. Our observations provide unique insight into the structural changes of siRNA/PEI NPs when crossing the cell membrane, which can be important for the design of new NP carriers for nucleic acid delivery.
Collapse
Affiliation(s)
- Yousef Nademi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
8
|
Ding HM, Ma YQ. Computational approaches to cell-nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. NANOSCALE HORIZONS 2018; 3:6-27. [PMID: 32254106 DOI: 10.1039/c7nh00138j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their unique properties, nanomaterials have been widely used in biomedicine since they have obvious inherent advantages over traditional ones. However, nanomaterials may also cause dysfunction in proteins, genes and cells, resulting in cytotoxic and genotoxic responses. Recently, more and more attention has been paid to these potential toxicities of nanomaterials, especially to the risks of nanomaterials to human health and safety. Therefore, when using nanomaterials for biomedical applications, it is of great importance to keep the balance between therapeutic efficiency and cytotoxicity (i.e., increase the therapeutic efficiency as well as decrease the potential toxicity). This requires a deeper understanding of the interactions between various types of nanomaterials and biological systems at the nano/bio interface. In this review, from the point of view of theoretical researchers, we will present the current status regarding the physical mechanism of cytotoxicity caused by nanomaterials, mainly based on recent simulation results. In addition, the strategies for minimizing the nanotoxicity naturally and artificially will also be discussed in detail. Furthermore, we should notice that toxicity is not always bad for clinical use since causing the death of specific cells is the main way of treating disease. Enhancing the targeting ability of nanomaterials to diseased cells and minimizing their side effects on normal cells will always be hugely challenging issues in nanomedicine. By combining the latest computational studies with some experimental verifications, we will provide special insights into recent advances regarding these problems, especially for the design of novel environment-responsive nanomaterials.
Collapse
Affiliation(s)
- Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | | |
Collapse
|