1
|
Yang Y, Tian F, Nie D, Liu Y, Qian K, Yu M, Wang A, Zhang Y, Shi X, Gan Y. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. SCIENCE ADVANCES 2020; 6:eaay9937. [PMID: 32083187 PMCID: PMC7007268 DOI: 10.1126/sciadv.aay9937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/22/2019] [Indexed: 05/23/2023]
Abstract
Polyethylene glycols (PEGs) can improve the diffusivity of nanoparticles (NPs) in biological hydrogels, while extended PEG chains severely impede cellular uptake of NPs. Inspired by invasive germs with flagellum-driven mucus-penetrating and fimbriae-mediated epithelium-adhering abilities, we developed germ-mimetic NPs (GMNPs) to overcome multiple barriers in mucosal and tumor tissues. In vitro studies and computational simulations revealed that the tip-specific extended PEG chains on GMNP functioned similarly to flagella, facilitating GMNP diffusion (up to 83.0-fold faster than their counterparts). Meanwhile, the packed PEG chains on the bodies of GMNP mediated strong adhesive interactions with cells similarly to the fimbriae, preserving cellular uptake efficiency. The in vivo results proved the superior tumor permeability and improved oral bioavailability provided by the GMNP (21.9-fold over administration of crystalline drugs). These findings offer useful guidelines for the rational design of NPs by manipulating surface polymer conformation to realize multiple functions and to enhance delivery efficacy.
Collapse
Affiliation(s)
- Yiwei Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Falin Tian
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Di Nie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yuan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
| | - Kun Qian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Miaorong Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Aohua Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yaqi Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501 Haike Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide) Hydrogels for Transdermal Delivery. Polymers (Basel) 2017; 9:polym9070286. [PMID: 30970963 PMCID: PMC6432290 DOI: 10.3390/polym9070286] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023] Open
Abstract
Novel poly (ethylene oxide) (PEO) hydrogel films were synthesized via UV cross-linking with pentaerythritol tetra-acrylate (PETRA) as cross-linking agent. The purpose of this work was to develop a novel hydrogel film suitable for passive transdermal drug delivery via skin application. Hydrogels were loaded with model drugs (lidocaine hydrochloride (LID), diclofenac sodium (DIC) and ibuprofen (IBU)) via post-loading and in situ loading methods. The effect of loading method and drug physicochemical properties on the material and drug release properties of medicated film samples were characterized using scanning electron microscopy (SEM), swelling studies, differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR), tensile testing, rheometry, and drug release studies. In situ loaded films showed better drug entrapment within the hydrogel network and also better polymer crystallinity. High drug release was observed from all studied formulations. In situ loaded LID had a plasticizing effect on PEO hydrogel, and films showed excellent mechanical properties and prolonged drug release. The drug release mechanism for the majority of medicated PEO hydrogel formulations was determined as both drug diffusion and polymer chain relaxation, which is highly desirable for controlled release formulations.
Collapse
|