1
|
Upadhyay S, Sharanagat VS. Plant protein-based Pickering emulsion for the encapsulation and delivery of fat-soluble vitamins: A systematic review. Int J Biol Macromol 2025; 306:141635. [PMID: 40037448 DOI: 10.1016/j.ijbiomac.2025.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Vitamin deficiencies pose a significant global health challenge, leading to various health issues and economic burdens. These challenges arise with the delivery of fat-soluble vitamin (FSV) due to its poor stability against the environmental stimuli. The commercial fortification methods such as Pickering emulsion (PE), hydrogel and others offer a potential solution over the limitations of conventional vitamin delivery methods (degradation and poor bioavailability). PE stabilized by solid plant protein particles, have emerged as a promising approach for encapsulation and delivery of oil-soluble vitamins (A, D, E, and K). Plant proteins, with their amphiphilic nature and nutritional benefits, are particularly well-suited as a stabilizer for PE. Plant protein-based PE enhances protection of vitamins against the environmental stimuli and enhances the delivery efficiency of oil-soluble vitamins. Factors such as particle size, concentration, and oil type also influence the stability, encapsulation efficiency, and bio-accessibility of fat-soluble vitamins in PE. Hence, the present review explores the impact of various factors on the stability and bio-accessibility of fat-soluble vitamins (A, D and E) and also emphasizing the role of particle size and concentration of stabilizer in controlling release rates of vitamin encapsulated PE. The review also highlights the application of plant protein-based PEs in various food products including nutrient fortification, functional foods, and 3D food printing.
Collapse
Affiliation(s)
- Srishti Upadhyay
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, HR, 131028 India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, HR, 131028 India.
| |
Collapse
|
2
|
Gotad PS, Mokarizadeh AH, Tsige M, Jana SC. Understanding Separation of Oil-Water Emulsions by High Surface Area Polymer Gels Using Experimental and Simulation Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24622-24633. [PMID: 39514214 DOI: 10.1021/acs.langmuir.4c03496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work examines the functional dependence of the efficiency of separation of oil-water emulsions on surfactant adsorption abilities of high surface area polymer gels. The work also develops an understanding of the factors and steps that are involved in emulsion separation processes using polymer gels. The work considers four polymer gels offering different surface energy values, namely, syndiotactic polystyrene (sPS), polyimide (PI), polyurea (PUA), and silica. The data reveal that surfactant adsorption abilities directly control the emulsion separation performance. The gels of sPS and PI destabilize the emulsions due to significant surfactant adsorption. The surfactant-lean oil droplets are then absorbed in the pores of sPS and PI gels due to the preferential wettability of the oil phase. The PUA and silica gels are more hydrophilic and show a lower surfactant adsorption ability. These gels cannot effectively remove the surfactant molecules from the emulsions, leading to a poor emulsion separation performance. The study uses simulation data to understand the adsorption characteristics of two poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants. The simulation results are used for the interpretation of emulsion separation performance by the gels.
Collapse
Affiliation(s)
- Pratik S Gotad
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Sadhan C Jana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| |
Collapse
|
3
|
Yin C, Chen X, Zhang H, Xue Y, Dong H, Mao X. Pickering emulsion biocatalysis: Bridging interfacial design with enzymatic reactions. Biotechnol Adv 2024; 72:108338. [PMID: 38460741 DOI: 10.1016/j.biotechadv.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.
Collapse
Affiliation(s)
- Chengmei Yin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xiangyao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yong Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
4
|
Ali DC, Zhang X, Wang Z. Surfactants Influencing the Biocatalytic Performance of Natural Alkane-Degrading Bacteria via Interfacial Biocatalysis in Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:291-301. [PMID: 38145885 DOI: 10.1021/acs.langmuir.3c02543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Setting superhydrophobic Mycobacterium sp. as an example, the hydrophobic bacteria acting as demulsifying agents of surfactant-stabilized conventional emulsions, vice versa, the synergistic/antagonistic influence of nonionic surfactants (Tween 80 or Span 80) on the stability of the bacteria-stabilized Pickering emulsions was investigated. At the same time, the activated/suppression effect of nonionic surfactants on microbial degradation of tetradecane, which exhibited a dose-response relationship, was also found. The hydrophobic bacteria acting as demulsifying agents and the suppression influence of nonionic surfactants on the biocatalytic performance (indexing as biomass) of natural alkane-degrading bacteria, believed to be totally separated concepts previously, are for the first time found to be closely related to in situ surface modification of bacteria with nonionic surfactants. During the degradation of tetradecane by Mycobacterium sp. in the presence of nonionic surfactants, demulsification due to the bacteria acting as demulsifying agents and interfacial biocatalysis in the bacteria-stabilized Pickering emulsions are involved, which provides useful information to select optimal dispersants for marine oil spills.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| |
Collapse
|
5
|
Destabilization of Pickering emulsions by interfacial transport of mutually soluble solute. J Colloid Interface Sci 2023; 633:166-176. [PMID: 36442288 DOI: 10.1016/j.jcis.2022.10.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Pickering emulsions (PEs) once formed are highly stable because of very high desorption energies (∼107 kBT) associated with particles adsorbed to the interfaces. The destabilization of PEs is required in many instances for recovery of valuable chemicals, products and active compounds. We propose to exploit interfacial instabilities develop by the addition of different types of solutes to PEs as a route to engineer their destabilization. EXPERIMENTS PEs stabilized by (i) spherical particles, (ii) non-spherical particles, (iii) oppositely charged particle-particle mixtures, and (iv) oppositely charged particle-polyelectrolyte mixtures are formulated. Different types of solutes are added to these highly stable PEs and the macroscopic as well as microscopic changes induced in the PEs is recorded by visual observation and bright field optical microscopy. FINDINGS Our results point to a simple yet robust method to induce destabilization of PEs by transiently perturbing the oil-water interface by transport of a mutually soluble solute across the interface. The generality of the method is demonstrated for different kind of solutes and stabilizers including particles of different sizes (nm to µm), shapes (sphere, spheroids, spherocylinders) and types (polystyrene, metal oxides). The method works for both oil-in-water (o/w) and water-in-oil (w/o) PEs with different kinds of non-polar solvents as oil-phase. However, the method fails when the solute is insoluble in one of the phases of PEs. The study opens up a new approach to destabilization of particle stabilized emulsions.
Collapse
|
6
|
Nie C, Zhang Y, Du H, Han G, Yang J, Li L, HongjunWu, Wang B, Wang X. A Molecular modeling and Experimental Study of Solar Thermal Role on Interfacial Film of Emulsions for Elucidating and Executing Efficient Solar Demulsification. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Guan X, Sheng Y, Jiang H, Binks BP, Ngai T. Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil. J Colloid Interface Sci 2022; 623:476-486. [PMID: 35597017 DOI: 10.1016/j.jcis.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Alcohols can strongly reduce the interfacial tension between immiscible liquids, thus facilitating the formation of emulsions. By combining non-surface-active hydrophobic particles with medium-chain alcohols, stable water-in-oil (w/o) high internal phase Pickering emulsions (HIPPEs) can be easily prepared without high-energy emulsification methods. EXPERIMENTS The emulsions containing acrylate monomer as the oil phase were prepared at different pH values in the presence of hydrophobic silica particles. Further, by replacing monomer oil with organic solvents (e.g., toluene) and a certain concentration of alcohol, the promoted particle adsorption at the oil-water interface has been systematically investigated. The morphology and interfacial structure of HIPPEs were visualized by confocal laser scanning microscopy (CLSM). FINDING At high pH, stable water-in-acrylate monomer HIPPEs can be formed using commercial fumed silica nanoparticles alone with simple stirring or vortexing. The hydrolysis of the acrylate group at high pH can generate alcohols in situ which adsorb at the oil-water interface to reduce the interfacial tension and promote particle adsorption to hinder droplet coalescence. The novel strategy for forming stable and processable HIPPEs can be universally applied to different hydrophobic silica particles with the help of various alcohols as the co-stabilizer, which provides a flexible approach for the fabrication of lightweight, closed-cell solid foams for a range of applications.
Collapse
Affiliation(s)
- Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yifeng Sheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, HU6 7RX, United Kingdom.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
8
|
Raya SA, Saaid IM, Mohd Aji AQ, A Razak AA. Investigation of the synergistic effect of nonionic surfactants on emulsion resolution using response surface methodology. RSC Adv 2022; 12:30952-30961. [PMID: 36349040 PMCID: PMC9614612 DOI: 10.1039/d2ra04816g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
The production of crude oil is always accompanied by water production, which may create severe separation problems. It is important to understand the stabilization mechanism and parameters contributing to the formation of emulsion, specifically the synergy mixing of surfactants. These factors have not been studied primarily in previous studies. The main objective of the current work was to assess the influence of synergy mixing of nonionic surfactants, sorbitan monooleate (hexitol) and polysorbate 80 (glycol), which are mainly affecting the stability of oil-in-water emulsions. Several factors, such as the mixing rate, mixing time, and aging time of the studied emulsions were also investigated. Response surface methodology (RSM), and central composite design (CCD) were employed to design the experiments. Emulsion stability was measured through a static bottle test over a range of time (1–7 days) at a temperature of 60 °C. A model was established with a coefficient of determination value at 0.8814 and the highest emulsion stability achieved was 42.83%. The least water separation was observed at 0.5 v/v% hexitol, 1.5 v/v% glycol, 15 000 rpm mixing rate in 5 minutes, and seven-day ageing time to achieve ∼41.56% emulsion stability. The minimum emulsion stability of ∼25.0% was observed using 0.5 v/v% of sorbitan monooleate and polysorbate 80 at 5000 rpm of mixing rate in 15 min and under seven days of observation. The results also revealed that the mixing time and ageing time do not affect the stability of the prepared emulsions. Hexitol, mixing rate, synergy mixing of nonionic surfactants and polysorbate 80, and mixing speed significantly influence emulsion stability. The R2 value of 88.14% verified that the model is well-fitted and the optimal values for the input variables were successfully obtained using RSM. Response surface methodology (RSM) plot of formulation optimization showing the effect of variables on hexitol and glycol. Response surface plots of the predicted stability as a function of hexitol and glycol.![]()
Collapse
Affiliation(s)
- Sofiah Atirah Raya
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Ismail Mohd Saaid
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Aminah Qayyimah Mohd Aji
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Ahmad Amirhilmi A Razak
- Petronas Research Sdn. Bhd., Jln Ayer Hitam, Kawasan Institusi Bangi, 43000 Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Wang R, Feng Y, Zhong Y, Zou Y, Yang M, Liu Y, Zhou Y. Enhancing Demulsification Performance for Oil-Water Separation through Encapsulating Ionic Liquids in the Pore of MIL-100(Fe). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8232-8239. [PMID: 34191526 DOI: 10.1021/acs.langmuir.1c00945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emulsion poses a greater challenge for the remediation of oily wastewater, which can be effectively resolved by the metal-organic framework of MIL-100(Fe). The formula Fe3O(H2O)2(OH) (BTC)2 pronounces that MIL-100(Fe) suffers from an intrinsic defect of less charged atoms, which limits its demulsification performance for oil-water separation. Herein, cations of the ionic liquid (1-allyl-3-methylimidazolium, Amim+) were encapsulated in the micropore of MIL-100(Fe) in situ to increase the positive charge density of MIL-100(Fe). Zeta potential demonstrated that the encapsulation of Amim+ increased the positive charge amount of MIL-100(Fe). N2 probe isothermal adsorption/desorption and spectral measurements (X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflection spectroscopy, and attenuated total-reflectance infrared spectroscopy) revealed the host-guest interactions of π···Fe complexation and π···cation electrostatic attraction between Amim+ and MIL-100(Fe) for the composite materials. Amim+ encapsulation greatly enhanced the demulsification performance of MIL-100(Fe) for oil-in-water (O/W) emulsion stabilized by sodium dodecyl sulfate. Amim+-encapsulated MIL-100(Fe) with an Amim+/Fe3+ molar ratio of 1:1 [Amim@MIL-100(Fe)-3:3] showed a demulsification efficiency (DE) of 94% within 30 s, compared with MIL-100(Fe) within 30 min. The maximum DE of Amim@MIL-100(Fe)-3:3 was found to be more than 98% within 5 min. The DE lost by MIL-100(Fe) at the third run decreased from 36 to 17% after encapsulating Amim+. The analysis of surface charge and interfacial tension implied a demulsification mechanism of capturing-fusion, which could be promoted by the greater electrostatic attraction. Finally, the role of Amim+ on the outstanding demulsification performance by Amim+-encapsulated MIL-100(Fe) could be explained by the enhanced nonbonded interaction of electrostatic attraction and van der Waals based on the molecular dynamics simulation.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yi Feng
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yunqian Zhong
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yanzhao Zou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Mingjun Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
| |
Collapse
|
11
|
Effect of non-ionic surfactants on the adsorption of polycyclic aromatic compounds at water/oil interface: A molecular simulation study. J Colloid Interface Sci 2021; 586:766-777. [DOI: 10.1016/j.jcis.2020.10.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/31/2020] [Indexed: 11/23/2022]
|
12
|
Correia EL, Brown N, Razavi S. Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:374. [PMID: 33540620 PMCID: PMC7913064 DOI: 10.3390/nano11020374] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics.
Collapse
Affiliation(s)
| | | | - Sepideh Razavi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman, OK 73019, USA; (E.L.C.); (N.B.)
| |
Collapse
|
13
|
Yang L, Zhao X, Lei M, Sun J, Yang L, Shen Y, Zhao Q. Facile construction of thermo-responsive Pickering emulsion for esterification reaction in phase transfer catalysis system. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Dekker RI, Deblais A, Velikov KP, Veenstra P, Colin A, Kellay H, Kegel WK, Bonn D. Emulsion Destabilization by Squeeze Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7795-7800. [PMID: 32543206 PMCID: PMC7366505 DOI: 10.1021/acs.langmuir.0c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Indexed: 06/11/2023]
Abstract
There is a large debate on the destabilization mechanism of emulsions. We present a simple technique using mechanical compression to destabilize oil-in-water emulsions. Upon compression of the emulsion, the continuous aqueous phase is squeezed out, while the dispersed oil phase progressively deforms from circular to honeycomb-like shapes. The films that separate the oil droplets are observed to thin and break at a critical oil/water ratio, leading to coalescence events. Electrostatic interactions and local droplet rearrangements do not determine film rupture. Instead, the destabilization occurs like an avalanche propagating through the system, starting at areas where the film thickness is smallest.
Collapse
Affiliation(s)
- Riande I. Dekker
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Van’t
Hoff Laboratory of Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Antoine Deblais
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Unilever
Innovation Center Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
| | - Krassimir P. Velikov
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Unilever
Innovation Center Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Peter Veenstra
- Shell
Global Solutions International B.V., Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Annie Colin
- Chimie Biologie
Innovation, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
- Centre
de Recherche Paul Pascal, CNRS, Université de Bordeaux, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Hamid Kellay
- Laboratoire
Ondes et Matière d’Aquitaine, UMR 5798, CNRS, Université
de Bordeaux, 351 Cours
de la Libération, 33405 Talence, France
| | - Willem K. Kegel
- Van’t
Hoff Laboratory of Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniel Bonn
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
15
|
Jia H, Huang W, Han Y, Wang Q, Wang S, Dai J, Tian Z, Wang D, Yan H, Lv K. Systematic investigation on the interaction between SiO2 nanoparticles with different surface affinity and various surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112777] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Influence of non-ionic surfactant addition on the stability and rheology of particle-stabilized emulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Samarehfekri H, Ranjbar M, Pardakhty A, Amanatfard A. Systematic Study of NaF Nanoparticles in Micelles loaded on Polylactic Acid Nanoscaffolds: In Vitro Efficient Delivery. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01660-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Destabilizing Pickering emulsions using fumed silica particles with different wettabilities. J Colloid Interface Sci 2019; 547:117-126. [DOI: 10.1016/j.jcis.2019.03.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
|
19
|
Peng K, Liu W, Xiong Y, Lu L, Liu J, Huang X. Emulsion microstructural evolution with the action of environmentally friendly demulsifying bacteria. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Haller B, Göpfrich K, Schröter M, Janiesch JW, Platzman I, Spatz JP. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. LAB ON A CHIP 2018; 18:2665-2674. [PMID: 30070293 DOI: 10.1039/c8lc00582f] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-copolymer surfactant-stabilized water-in-oil droplets. By tuning the charge of the inner droplet interface, adsorption of lipids can be either inhibited, leading to multicompartment systems, or induced, leading to the formation of droplet-stabilized GUVs. To control the charge density, we formed droplets using different molar ratios of an uncharged PEG-based fluorosurfactant and a negatively-charged PFPE carboxylic acid fluorosurfactant (Krytox). We systematically studied the transition from a multicompartment system to 3D-supported lipid bilayers as a function of lipid charge and Krytox concentration using confocal fluorescence microscopy, cryo-scanning electron microscopy and interfacial tension measurements. Moreover, we demonstrate a simple method to release GUVs from the surfactant shell and the oil phase into a physiological buffer - providing a remarkably high-yield approach for GUV formation. This widely applicable microfluidics-based technology will increase the scope of GUVs as adaptable cell-like compartments in bottom-up synthetic biology applications and beyond.
Collapse
Affiliation(s)
- Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Song N, Wang AJ, Li JM, Zhu Z, Shi H, Ma XL, Sun D. Study on influencing factors of Pickering emulsions stabilized by hydroxyapatite nanoparticles with nonionic surfactants. SOFT MATTER 2018; 14:3889-3901. [PMID: 29726876 DOI: 10.1039/c8sm00241j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Emulsions were prepared using hydroxyapatite nanoparticles and nonionic surfactant sorbitan monooleate (Span 80) as emulsifier. Effects of Span 80 concentration, emulsification time, emulsification rate, poly(l-lactic acid) (PLLA) concentration and the surface chemical properties of hydroxyapatite nanoparticles on emulsion properties were systematically studied. The results showed that emulsion would undergo a phase inversion from oil-in-water (O/W) type to water-in-oil (W/O) type with an increase in Span 80 concentration. All of the above factors are closely related to emulsion type and stability. SEM results indicated that cured materials with different structures were obtained using these emulsions as templates via in situ evaporation; especially, open-cell porous structures were obtained by a mixture of hydroxyapatite and a moderate concentration of Span 80. The mechanism of this emulsion system is proposed in relation to the emulsion properties and cured material structure, which should be attributed to the formation of hydrogen bonds between hydroxyapatite and Span 80 by hydroxyl groups as well as their location changes in the emulsion.
Collapse
Affiliation(s)
- Na Song
- School of Materials Science and Engineering, Xi'an University of Technology, Shaanxi, Xi'an 710048, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen HJ, Hang T, Yang C, Liu G, Lin DA, Wu J, Pan S, Yang BR, Tao J, Xie X. Anomalous dispersion of magnetic spiky particles for enhanced oil emulsions/water separation. NANOSCALE 2018; 10:1978-1986. [PMID: 29319088 DOI: 10.1039/c7nr07995h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In situ effective separation of oil pollutants including oil spills and oil emulsions from water is an emerging technology yet remains challenging. Hydrophobic micro- or nano-materials with ferromagnetism have been explored for oil removal, yet the separation efficiency of an oil emulsion was compromised due to the limited dispersion of hydrophobic materials in water. A surfactant coating on microparticles prevented particle aggregation, but reduced oil absorption and emulsion cleaning ability. Recently, polystyrene microbeads covered with nanospikes have been reported to display anomalous dispersion in phobic media without surfactants. Inspired by this phenomenon, here magnetic microparticles attached with nanospikes were fabricated for enhanced separation of oil emulsions from water. In this design, the particle surfaces were functionalized to be superhydrophobic/superoleophilic for oil absorption, while the surface of the nanospikes prevented particle aggregation in water without compromising surface hydrophobicity. The magnetic spiky particles effectively absorbed oil spills on the water surface, and readily dispersed in water and offered facile cleaning of the oil emulsion. In contrast, hydrophobic microparticles without nanospikes aggregated in water limiting the particle-oil contact, while surfactant coating severely reduced particle hydrophobicity and oil absorption ability. Our work provides a unique application scope for the anomalous dispersity of microparticles and their potential opportunities in effective oil-water separation.
Collapse
Affiliation(s)
- Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moynihan HA, Armstrong D. Determination of composition distributions of multi-particle crystalline samples by sequential dissolution with concomitant particle sizing and solution analysis. CrystEngComm 2018. [DOI: 10.1039/c8ce00206a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sequential dissolution of multi-particle samples with before-and-after sizing gave composition data that can be assigned to defined sample particle regions.
Collapse
Affiliation(s)
- Humphrey A. Moynihan
- School of Chemistry
- Analytical and Biological Chemistry Research Facility
- Synthesis and Solid-state Pharmaceutical Centre
- University College Cork
- Republic of Ireland
| | - Declan Armstrong
- School of Chemistry
- Analytical and Biological Chemistry Research Facility
- Synthesis and Solid-state Pharmaceutical Centre
- University College Cork
- Republic of Ireland
| |
Collapse
|
24
|
Zhang Y, Guo S, Ren X, Liu X, Fang Y. CO 2 and Redox Dual Responsive Pickering Emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12973-12981. [PMID: 29072075 DOI: 10.1021/acs.langmuir.7b02976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we described for the first time a CO2 and redox dual responsive paraffin oil-in-water Pickering emulsion stabilized by the modified silica nanoparticles with Se-containing tertiary amine, SeTA, in which the tertiary amine serves as a CO2-sensitive group, and the Se atom serves as a redox-sensitive center. The Pickering emulsion can be reversibly switched between stable and unstable states by bubbling CO2 and N2 in the reduced state, or with the addition of H2O2 and Na2SO3 in the absence of CO2, because of the adsorption and desorption of SeTA on the silica surface. The former is mainly attributed to a CO2-controllable electrostatic attraction, resulting from the transition of molecules between cationic and nonionic states; whereas, the latter is ascribed to a redox-tunable hydrogen bonding, originating from the transition of molecules between selenide and selenoxide. However, in the presence of CO2, redox can only induce a change in the droplet size, not demulsification. These interesting and unique multiresponsive behaviors endow the Pickering emulsion with a capacity for intelligent control of emulsification and demulsification, as well as the droplet size, which may be an asset for a myriad of technological applications in biomedicine, microfluidics, drug delivery, and cosmetics.
Collapse
Affiliation(s)
- Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Shuang Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Xiaofei Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Xuefeng Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi 214122, P. R. China
| |
Collapse
|