1
|
Huang YT, Chen JY, Hsieh CA, Ezhumalai Y, Huang CJ, Yau S. Effects of Anion Coadsorption on the Self-Assembly of 11-Acryloylamino Undecanoic Acid on an Au(111) Electrode. ACS OMEGA 2024; 9:39827-39835. [PMID: 39346848 PMCID: PMC11425958 DOI: 10.1021/acsomega.4c05080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
11-acryloylamino undecanoic acid (AAUA) is a versatile polymerizable surfactant that has been applied to coat medical devices, and these applications can benefit from a fundamental understanding of its interaction with a metal substrate. Cyclic voltammetry and in situ scanning tunneling microscopy (STM) were used to examine the adsorption configuration of AAUA molecules on an ordered Au(111) electrode and their mutual interactions, as AAUA was adsorbed from a methanol dosing solution. In addition to the van der Waals force between the aliphatic groups, the hydrogen bonding between the carboxylic acid and acrylamide groups was also important to guide the spatial arrangement of AAUA admolecules on the Au electrode. The -COOH group of AAUA admolecule likely dissociated in neutral media to -COO-, which formed hydrogen bonds with H2PO4 - in phosphate buffer solution (PBS). This interaction between the AAUA admolecules and ions in the electrolyte resulted in different electrochemical characteristics observed in phosphate buffer solution (PBS) and potassium sulfate (K2SO4). Molecular-resolution STM imaging revealed distinctly different AAUA spatial structures on the Au electrode in PBS and K2SO4. Shifting the potential positively to 0.5 V (versus Ag/AgCl) led to lifting of the reconstructed Au(111) to the (1 × 1) phase and the dissolution of the ordered AAUA film, suggesting that the orientation of the AAUA admolecule was altered. The ordered AAUA adlayer could be partially recovered by shifting the potential negatively.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Jia-Yin Chen
- Department
of Chemical and Materials Engineering, National
Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Chiao-An Hsieh
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Yamuna Ezhumalai
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Chun-Jen Huang
- Department
of Chemical and Materials Engineering, National
Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chungli County, Taoyuan
City 32023, Taiwan ROC
| | - Shuehlin Yau
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| |
Collapse
|
2
|
Yao X, Zhang H, Kong F, Hinaut A, Pawlak R, Okuno M, Graf R, Horton PN, Coles SJ, Meyer E, Bogani L, Bonn M, Wang HI, Müllen K, Narita A. N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility. Angew Chem Int Ed Engl 2023; 62:e202312610. [PMID: 37750665 DOI: 10.1002/anie.202312610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives (1 and 2) as subunits of 8-AGNR, with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR. The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V-1 s-1 for the 8-AGNR.
Collapse
Affiliation(s)
- Xuelin Yao
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
- Department of Materials, University of Oxford, OX1 3PH, Oxford, United Kingdom
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Fanmiao Kong
- Department of Materials, University of Oxford, OX1 3PH, Oxford, United Kingdom
| | - Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Masanari Okuno
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, 153-8902, Tokyo, Japan
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Peter N Horton
- National Crystallography Service, School of Chemistry, University of Southampton, SO17 1BJ, Southampton, United Kingdom
| | - Simon J Coles
- National Crystallography Service, School of Chemistry, University of Southampton, SO17 1BJ, Southampton, United Kingdom
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Lapo Bogani
- Department of Materials, University of Oxford, OX1 3PH, Oxford, United Kingdom
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Okinawa, Japan
| |
Collapse
|
3
|
Geometric constraints of molecular self-assembly of normal alkanes on graphite. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Adsorption and desorption mechanisms on graphene oxide nanosheets: Kinetics and tuning. Innovation (N Y) 2021; 2:100137. [PMID: 34557777 PMCID: PMC8454550 DOI: 10.1016/j.xinn.2021.100137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
A knowledge of the adsorption and desorption behavior of sorbates on surface adsorptive site (SAS) is the key to optimizing the chemical reactivity of catalysts. However, direct identification of the chemical reactivity of SASs is still a challenge due to the limitations of characterization techniques. Here, we present a new pathway to determine the kinetics of adsorption/desorption on SASs of graphene oxide (GO) based on total internal reflectance fluorescence microscopy. The switching on and off of the fluorescent signal of SAS lit by carbon dots (CDs) was used to trace the adsorption process and desorption process. We find that sodium pyrophosphate (PPi) could increase the adsorption equilibrium of CDs thermodynamically and promote the substrate-assisted desorption pathway kinetically. At the single turnover level, it was disclosed that the species that can promote desorption may also be an adsorption promoter. Such discovery provides significant guidance for improving the chemical reactivity of the heterogeneous catalyst. The kinetics of adsorption and desorption process were revealed, respectively, by monitoring a fluorogenic process of carbon dots on the surface of graphene oxides at the single turnover level By regulating the equilibrium of adsorption and desorption, a mechanism for the simultaneous promotion of adsorption and desorption has been discovered A desorption accelerator could play a satisfactory double action, i.e., adsorption promoter on thermodynamics and desorption promoter on kinetics
Collapse
|
5
|
Li H, Kelly KF, Baldelli S. Spectroscopic imaging of surfaces-Sum frequency generation microscopy (SFGM) combined with compressive sensing (CS) technique. J Chem Phys 2020; 153:190901. [PMID: 33218244 DOI: 10.1063/5.0022691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Surface chemistry is notoriously difficult to study, in part, due to the decreased number of molecules that contribute to the properties compared to the bulk phase but often has significant effects on the chemical activity of the material. This is especially true in topics such as corrosion, catalysis, wetting, and many others in nature and industry. Sum frequency generation (SFG) spectroscopy was developed for interface studies due to its high molecular selectivity and surface sensitivity, which is quite useful to study the effects of structural inhomogeneity in microscopy. Compressive sensing (CS) combined with SFG spectroscopy minimizes the imaging time while still producing quality images. Selected systems are presented here to demonstrate the capability of CS-SFG microscopy. CS-SFG microscopy successfully distinguished the static monolayer molecular mixtures, the orientations and adsorption of adsorbed molecules by the dip-coating technique, and the localized CO behaviors on polycrystalline Pt electrodes. Further discussion includes dynamic imaging as a future direction in CS-SFG microscopy. As materials and surfaces become more complex, imaging with chemical contrast becomes indispensable to understanding their performance and CS-SFG microscopy seems highly beneficial in this respect.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Kevin F Kelly
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Steven Baldelli
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
6
|
Tenorio BNC, Moitra T, Nascimento MAC, Rocha AB, Coriani S. Molecular inner-shell photoabsorption/photoionization cross sections at core-valence-separated coupled cluster level: Theory and examples. J Chem Phys 2019; 150:224104. [PMID: 31202254 DOI: 10.1063/1.5096777] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxygen, nitrogen, and carbon K-shell photoabsorption and photoionization cross sections have been calculated within core-valence-separated coupled cluster (CC) linear response theory for a number of molecular systems, namely, water, ammonia, ethylene, carbon dioxide, acetaldehyde, furan, and pyrrole. The cross sections below and above the K-edge core ionization thresholds were obtained, on the same footing, from L2 basis set calculations of the discrete electronic pseudospectrum yielded by an asymmetric-Lanczos-based formulation of CC linear response theory at the CC singles and doubles (CCSD) and CC singles and approximate doubles (CC2) levels. An analytic continuation procedure for both discrete and continuum cross sections as well as a Stieltjes imaging procedure for the photoionization cross section were applied and the results critically compared.
Collapse
Affiliation(s)
- Bruno Nunes Cabral Tenorio
- Instituto de Química, Universidade Federal do Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Torsha Moitra
- DTU Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Marco Antonio Chaer Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Alexandre Braga Rocha
- Instituto de Química, Universidade Federal do Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Yu X, Tang W, Zhao T, Jin Z, Zhao S, Liu H. Confinement Effect on Molecular Conformation of Alkanes in Water-Filled Cavitands: A Combined Quantum/Classical Density Functional Theory Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13491-13496. [PMID: 30350710 DOI: 10.1021/acs.langmuir.8b02209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The depletion force exerted on an alkane molecule from surrounding solvent may greatly alter its conformation. Such a behavior is closely related to the selective molecular recognition, molecular sensors, self-assembly, and so on. Herein, we report a multiscale theoretical study on the conformational change of a single alkane molecule confined in water-filled cavitands, in which the quantum and classical density functional theories (DFTs) are combined to determine the grand potential of alkane-water system. Specifically, the intrinsic free energy of the alkane molecule is tackled by quantum DFT, while the solvent effect arising from the solvent density inhomogeneity in confined space is addressed by classical DFT. By varying the alkane chain length, pore size, and wettability of inner pore surface, we find that pore confinement and hydrophilic inner surface facilitate the alkane conformational change from extended state to helical state, which becomes more significant as the alkane chain length increases. Our findings, which are in line with previous experimental observations, provide not only the microscopic mechanism but also theoretical guidance for elaborately manipulating molecular conformation at the nanoscale.
Collapse
Affiliation(s)
| | | | | | - Zhehui Jin
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering , University of Alberta , Edmonton AB T6G 1H9 , Canada
| | | | | |
Collapse
|
8
|
Tenorio BNC, Oliveira RR, Nascimento MAC, Rocha AB. Coupled Cluster and Time-Dependent Density Functional Theory Description of Inner Shell Photoabsorption Cross Sections of Molecules. J Chem Theory Comput 2018; 14:5324-5338. [DOI: 10.1021/acs.jctc.8b00375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bruno Nunes Cabral Tenorio
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| | - Ricardo Rodrigues Oliveira
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| | - Marco Antonio Chaer Nascimento
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| | - Alexandre Braga Rocha
- UFRJ - Universidade Federal do Rio de Janeiro, Instituto
de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brasil
| |
Collapse
|
9
|
Cyclic Voltammetry and <i>in situ</i> Infrared Reflection Absorption Spectroscopy on Kinetic Effect of Physisorbed Dioctadecylsulfide on a Cu-UPD Process on Au(111) Electrode Surface. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2018. [DOI: 10.1380/ejssnt.2018.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|