1
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
2
|
Li B, Wang YL. Self-Assembly of Miktoarm Star Polyelectrolytes in Solutions with Various Ionic Strengths. ACS OMEGA 2022; 7:20791-20799. [PMID: 35755333 PMCID: PMC9219065 DOI: 10.1021/acsomega.2c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
We studied the self-assembly of miktoarm star polyelectrolytes with different numbers of arms in solutions with various ionic strengths using coarse-grained molecular dynamic simulations. Spherical micelles are obtained for star polyelectrolytes with fewer arms, whereas wormlike clusters are obtained for star polyelectrolytes with more arms at a low ionic strength environment, with hydrophilic arms showing a stretched conformation. The number of clusters shows an overall decreasing tendency with increasing the number of arms in star polyelectrolytes due to strong electrostatic coupling between polycations and polyanions. The formation of wormlike clusters follows an overall stepwise pathway with an intermittent association-dissociation process for star polyelectrolytes with weak electrostatic coupling. These computational results can provide relevant physical insights to understand the self-assembly mechanism of star polyelectrolytes in solvents with various ionic strengths and to design star polyelectrolytes with functional groups that can fine-tune self-assembled structures for specific applications.
Collapse
Affiliation(s)
- Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
5
|
Zhou P, Shi B, Liu Y, Li P, Wang G. Exploration of the modification-induced self-assembly (MISA) technique and the preparation of nano-objects with a functional poly(acrylic acid) core. Polym Chem 2022. [DOI: 10.1039/d2py00666a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrolysis-based post-polymerization modification method was introduced into the self-assembly process and a modification-induced self-assembly (MISA) technique was presented.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuang Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Penghan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Lu Y, Chen W, Wang Y, Huo F, Dong Y, Wei L, He H. Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Şen S, Davis F, Çapan R, Özbek Z, Özel ME, Stanciu GA. A macrocyclic tetra-undecyl calix[4]resorcinarene thin film receptor for chemical vapour sensor applications. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01024-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Abalymov A, Parakhonskiy B, Skirtach AG. Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering. Polymers (Basel) 2020; 12:E620. [PMID: 32182751 PMCID: PMC7182904 DOI: 10.3390/polym12030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, materials based on polymers and hybrids possessing both organic and inorganic contents for repairing or facilitating cell growth in tissue engineering are discussed. Pure polymer based biomaterials are predominantly used to target soft tissues. Stipulated by possibilities of tuning the composition and concentration of their inorganic content, hybrid materials allow to mimic properties of various types of harder tissues. That leads to the concept of "one-matches-all" referring to materials possessing the same polymeric base, but different inorganic content to enable tissue growth and repair, proliferation of cells, and the formation of the ECM (extra cellular matrix). Furthermore, adding drug delivery carriers to coatings and scaffolds designed with such materials brings additional functionality by encapsulating active molecules, antibacterial agents, and growth factors. We discuss here materials and methods of their assembly from a general perspective together with their applications in various tissue engineering sub-areas: interstitial, connective, vascular, nervous, visceral and musculoskeletal tissues. The overall aims of this review are two-fold: (a) to describe the needs and opportunities in the field of bio-medicine, which should be useful for material scientists, and (b) to present capabilities and resources available in the area of materials, which should be of interest for biologists and medical doctors.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | | | - Andre G. Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Paoli R, Bulwan M, Castaño O, Engel E, Rodriguez-Cabello JC, Homs-Corbera A, Samitier J. Layer-by-layer modification effects on a nanopore's inner surface of polycarbonate track-etched membranes. RSC Adv 2020; 10:35930-35940. [PMID: 35517089 PMCID: PMC9056999 DOI: 10.1039/d0ra05322h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
The control of the morphology, as well as the physical and chemical properties, of nanopores is a key issue for many applications. Reducing pore size is important in nanopore-based sensing applications as it helps to increase sensitivity. Changes of other physical properties such as surface net charge can also modify transport selectivity of the pores. We have studied how polyelectrolyte layer-by-layer (LBL) surface modification can be used to change the characteristics of nanoporous membranes. Studies were performed with a custom made three-dimensional multilayer microfluidic device able to fit membrane samples. The device allowed us to efficiently control LBL film deposition over blank low-cost commercially available polycarbonate track-etched (PCTE) membranes. We have demonstrated pore diameter reduction and deposition of the layers inside the pores through confocal and SEM images. Posterior impedance measurement studies served to evaluate experimentally the effect of the LBL deposition on the net inner nanopore surface charge and diameter. Measurements using direct current (DC) and alternative current (AC) voltages have demonstrated contrasted behaviors depending on the number and parity of deposited opposite charge layers. PCTE membranes are originally negatively charged and results evidenced higher impedance increases for paired charge LBL depositions. Impedance decreased when an unpaired positive layer was added. These results showed a different influence on the overall ion motility due to the effect of different surface charges. Results have been fit into a model that suggested a strong dependence of nanopores' impedance module to surface charge on conductive buffers, such as Phosphate Buffer Saline (PBS), even on relatively large nanopores. In AC significant differences between paired and unpaired charged LBL depositions tended to disappear as the total number of layers increased. The control of the morphology, as well as the physical and chemical properties, of nanopores is a key issue for many applications.![]()
Collapse
Affiliation(s)
- Roberto Paoli
- Nanobioengineering Group
- Institute for Bioengineering of Catalonia (IBEC)
- Barcelona Institute of Science and Technology (BIST)
- Barcelona 08028
- Spain
| | - Maria Bulwan
- Nanobioengineering Group
- Institute for Bioengineering of Catalonia (IBEC)
- Barcelona Institute of Science and Technology (BIST)
- Barcelona 08028
- Spain
| | - Oscar Castaño
- Department of Electronics and Biomedical Engineering
- University of Barcelona
- 08028 Barcelona
- Spain
- Biomaterials for Regenerative Therapies Group
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group
- Institute for Bioengineering of Catalonia (IBEC)
- Barcelona Institute of Science and Technology (BIST)
- Barcelona 08028
- Spain
| | - J. C. Rodriguez-Cabello
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- 28029 Madrid
- Spain
- Bioforge Lab
- University of Valladolid
| | - Antoni Homs-Corbera
- Nanobioengineering Group
- Institute for Bioengineering of Catalonia (IBEC)
- Barcelona Institute of Science and Technology (BIST)
- Barcelona 08028
- Spain
| | - Josep Samitier
- Nanobioengineering Group
- Institute for Bioengineering of Catalonia (IBEC)
- Barcelona Institute of Science and Technology (BIST)
- Barcelona 08028
- Spain
| |
Collapse
|
10
|
Lee H, Stryutsky AV, Korolovych VF, Mikan E, Shevchenko VV, Tsukruk VV. Transformations of Thermosensitive Hyperbranched Poly(ionic liquid)s Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11809-11820. [PMID: 31418576 DOI: 10.1021/acs.langmuir.9b01905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We synthesized amphiphilic hyperbranched poly(ionic liquid)s (HBPILs) with asymmetrical peripheral composition consisting of hydrophobic n-octadecylurethane arms and hydrophilic, ionically linked poly(N-isopropylacrylamide) (PNIPAM) macrocations and studied low critical solution temperature (LCST)-induced reorganizations at the air-water interface. We observed that the morphology of HBPIL Langmuir monolayers is controlled by the surface pressure with uniform well-defined disk-like domains formed in a liquid phase. These domains are merged and transformed to uniform monolayers with elevated ridge-like network structures representing coalesced interdomain boundaries in a solid phase because the branched architecture and asymmetrical chemical composition stabilize the disk-like morphology under high compression. Above LCST, elevated individual islands are formed because of the aggregation of the collapsed hydrophobized PNIPAM terminal macrocations in a solid phase. The presence of thermoresponsive PNIPAM macrocations initiates monolayer reorganization at LCST with transformation of surface mechanical contrast distribution. The heterogeneity of elastic response and adhesion distributions for HBPIL monolayers in the wet state changed from highly contrasted two-phase distribution below LCST to near-uniform mechanical response above LCST because of the hydrophilic to hydrophobic transformation of the PNIPAM phase.
Collapse
Affiliation(s)
- Hansol Lee
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Alexandr V Stryutsky
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine , Kyiv 02160 , Ukraine
| | - Volodymyr F Korolovych
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Emily Mikan
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Valery V Shevchenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine , Kyiv 02160 , Ukraine
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
11
|
Hupfer ML, Kaufmann M, May S, Preiß J, Weiß D, Dietzek B, Beckert R, Presselt M. Enhancing the supramolecular stability of monolayers by combining dipolar with amphiphilic motifs: a case of amphiphilic push-pull-thiazole. Phys Chem Chem Phys 2019; 21:13241-13247. [PMID: 31180395 DOI: 10.1039/c9cp02013f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Equipping a thiazole dye with push and pull moieties adds dipolar intermolecular interactions and two hydrophilic anchors to a centrally anchored π-stacking and otherwise mono-amphiphilic dye. We show that, despite the resulting irregular shape of the tripodal amphiphile, the enhanced intermolecular interactions and amphiphilicity yield smooth and stable thin films. Furthermore, we present a first approach for deriving supramolecular binding energies from the Langmuir-Blodgett hysteresis data.
Collapse
Affiliation(s)
- M L Hupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Wang B, Sheng X, Zhou Y, Zhu Z, Liu Y, Sha X, Zhang C, Gao H. Functional mesoporous poly (ionic liquid) derived from P123: From synthesis to catalysis and alkylation of styrene and
o
‐xylene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Beibei Wang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Xiaoli Sheng
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Yuming Zhou
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Zhiying Zhu
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Yonghui Liu
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Xiao Sha
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Chao Zhang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| | - Huaying Gao
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 People's Republic of China
| |
Collapse
|
14
|
Erwin AJ, Lee H, Ge S, Zhao S, Korolovych VF, He H, Matyjaszewski K, Sokolov AP, Tsukruk VV. Viscoelastic properties and ion dynamics in star-shaped polymerized ionic liquids. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Zhang Y, Cao M, Han G, Guo T, Ying T, Zhang W. Topology Affecting Block Copolymer Nanoassemblies: Linear Block Copolymers versus Star Block Copolymers under PISA Conditions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01121] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 100123, China
| | | | - Tengyuan Ying
- Institute of Semiconductor
Technology of Tianjin, Tianjin, China
| | | |
Collapse
|
16
|
Erwin AJ, Korolovych VF, Iatridi Z, Tsitsilianis C, Ankner JF, Tsukruk VV. Tunable Compartmentalized Morphologies of Multilayered Dual Responsive Star Block Polyampholytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew J. Erwin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Volodymyr F. Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zacharoula Iatridi
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | | | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Korolovych VF, Erwin AJ, Stryutsky A, Mikan EK, Shevchenko VV, Tsukruk VV. Self-Assembly of Hyperbranched Protic Poly(ionic liquid)s with Variable Peripheral Amphiphilicity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Volodymyr F. Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Andrew J. Erwin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alexandr Stryutsky
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Emily K. Mikan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Valery V. Shevchenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|