1
|
Novel Adhesive Nanocarriers Based on Mussel-Inspired Polyglycerols for the Application onto Mucosal Tissues. Pharmaceutics 2022; 14:pharmaceutics14050940. [PMID: 35631526 PMCID: PMC9144514 DOI: 10.3390/pharmaceutics14050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
A synthetic route for adhesive core-multishell (CMS) nanocarriers for application to the oral mucosa was established using mussel-inspired catechol moieties. The three CMS nanocarriers with 8%, 13%, and 20% catechol functionalization were evaluated for loading capacity using Nile red, showing an overall loading of 1 wt%. The ability of Nile red loaded and functionalized nanocarriers to bind to a moist mucosal surface was tested in two complementary adhesion assays under static and dynamic conditions using monolayers of differentiated gingival keratinocytes. Adhesion properties of functionalized nanocarriers were compared to the adhesion of the non-functionalized nanocarrier. In both assays, the CMS nanocarrier functionalized with 8% catechol exhibited the strongest adhesion compared to its catechol-free counterpart and the CMS nanocarriers functionalized with 13% and 20% catechol.
Collapse
|
2
|
Chiera S, Koch VM, Bleyer G, Walter T, Bittner C, Bachmann J, Vogel N. From Sticky to Slippery: Self-Functionalizing Lubricants for In Situ Fabrication of Liquid-Infused Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16735-16745. [PMID: 35353481 DOI: 10.1021/acsami.2c02390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid-infused surfaces offer a versatile approach to create self-cleaning coatings. In such coatings, a thin film of a fluid lubricant homogeneously coats the substrate and thus prevents direct contact with a second, contaminating liquid. For stable repellency, the interfacial energies need to be controlled to ensure that the lubricant is not replaced by the contaminating liquid. Here, we introduce the concept of self-functionalizing lubricants. Functional molecular species that chemically match the lubricant but possess selective anchor groups are dissolved in the lubricant and self-adhere to the surface, forming the required surface chemistry in situ from within the applied lubricant layer. To add flexibility to the self-functionalizing concept, the substrate is first primed with a thin polydopamine base layer, which can be deposited to nearly any substrate material from aqueous solutions and retains reactivity toward electron-donating groups such as amines. The temporal progression of the in situ functionalization is investigated by ellipsometry and quartz crystal microbalance and correlated to macroscopic changes in contact angle and contact angle hysteresis. The flexibility of the approach is underlined by creating repellent coatings with various substrate/lubricant combinations. The prepared liquid-infused surfaces significantly reduce cement adhesion and provide easy-to-clean systems under real-world conditions on shoe soles.
Collapse
Affiliation(s)
- Salvatore Chiera
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Vanessa M Koch
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Teresa Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Carina Bittner
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Julien Bachmann
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
3
|
Krüger JM, Choi CY, Lossada F, Wang P, Löschke O, Auhl D, Börner HG. Broadening the Chemical Space of Mussel-Inspired Polymerization: The Roll-out of a TCC-Polymer Platform with Thiol–Catechol Connectivities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jana M. Krüger
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Ching-Yi Choi
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Francisco Lossada
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Peng Wang
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Oliver Löschke
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Dietmar Auhl
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| |
Collapse
|
4
|
An Q, Wang J, Zhao F, Li P, Wang L. Unidirectional water transport on a two-dimensional hydrophilic channel with anisotropic superhydrophobic barriers. SOFT MATTER 2021; 17:8153-8159. [PMID: 34525158 DOI: 10.1039/d1sm00697e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many creatures have a unique anisotropic structure and special wettability on their skins, presenting intriguing water transporting properties. Inspired by the biosphere, a two-dimensional titanium dioxide-based hydrophilic channel possessing anisotropic superhydrophobic barriers was synthesized. This channel demonstrates unidirectional water transporting properties. When water is injected into the channel, fluid tends to spread in a specific direction. An asymmetric spreading resistance is generated by the different interaction modes between the liquid and superhydrophobic barriers. The superhydrophobic barriers are designed as two main styles: line and curve. As for line barriers, the included angle between barrier and horizontal is the key parameter for the unidirectional water transporting ability whereas, for curve barriers, the radius is an important variable. The best design scheme for unidirectional water transporting properties could be found by varying the parameters of these two types of barriers in the channel. Overall, this study is expected to have a significant implication in the water transporting field.
Collapse
Affiliation(s)
- Qier An
- School of Aviation, Inner Mongolia University of Technology, 49 Aimin Street, Xincheng District, Hohhot, Inner Mongolia 010051, Inner Mongolia, P. R. China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, School of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China.
| | - Feng Zhao
- Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Peiliu Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
5
|
Liu S, Wang J. Eco-friendly and facile fabrication of polyimide mesh with underwater superoleophobicity for oil/water separation via polydopamine/starch hybrid decoration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Titanium coating with mussel inspired polymer and bio-orthogonal chemistry enhances antimicrobial activity against Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111109. [DOI: 10.1016/j.msec.2020.111109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
|
7
|
Gao P, Qiu H, Xiong K, Li X, Tu Q, Wang H, Lyu N, Chen X, Huang N, Yang Z. Metal-catechol-(amine) networks for surface synergistic catalytic modification: Therapeutic gas generation and biomolecule grafting. Biomaterials 2020; 248:119981. [DOI: 10.1016/j.biomaterials.2020.119981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
|
8
|
Anand K, Fournée V, Prévot G, Ledieu J, Gaudry É. Nonwetting Behavior of Al-Co Quasicrystalline Approximants Owing to Their Unique Electronic Structures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15793-15801. [PMID: 32125141 DOI: 10.1021/acsami.9b20653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Good wetting is generally observed for liquid metals on metallic substrates, while poor wetting usually occurs for metals on insulating oxides. In this work, we report unexpected large contact angles for lead on two metallic approximants to decagonal quasicrystals, namely, Al5Co2 and Al13Co4. Intrinsic surface wettability is predicted from first principles, using a thermodynamic model based on the Young equation, and validated by the good agreement with experimental measurements performed under ultra-high vacuum by scanning electron microscopy. The atomistic details of the atomic and electronic structures at the Pb-substrate interface, and the comparison with Pb(111)/Al(111), underline the influence of the specific electronic structures of quasicrystalline approximants on wetting. Our work suggests a possible correlation of the contact angles with the density of states at the Fermi energy and paves the way for a better fundamental understanding of wettability on intermetallic substrates, which has potential consequences in several applications such as supported catalysts, protective coatings, or crystal growth.
Collapse
Affiliation(s)
- Kanika Anand
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, BP44362, 31030 Toulouse Cedex 4, France
| | | | - Geoffroy Prévot
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Julian Ledieu
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Émilie Gaudry
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| |
Collapse
|
9
|
Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1981-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Kulka MW, Donskyi IS, Wurzler N, Salz D, Özcan Ö, Unger WES, Haag R. Mussel-Inspired Multivalent Linear Polyglycerol Coatings Outperform Monovalent Polyethylene Glycol Coatings in Antifouling Surface Properties. ACS APPLIED BIO MATERIALS 2019; 2:5749-5759. [DOI: 10.1021/acsabm.9b00786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michaël W. Kulka
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Ievgen S. Donskyi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
- BAM − Federal Institute for Material Research and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205 Berlin, Germany
| | - Nina Wurzler
- BAM − Federal Institute for Material Research and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205 Berlin, Germany
| | - Dirk Salz
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße12, 28359 Bremen, Germany
| | - Özlem Özcan
- BAM − Federal Institute for Material Research and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205 Berlin, Germany
| | - Wolfgang E. S. Unger
- BAM − Federal Institute for Material Research and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205 Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
11
|
Forsman N, Johansson LS, Koivula H, Tuure M, Kääriäinen P, Österberg M. Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydr Polym 2019; 227:115363. [PMID: 31590853 DOI: 10.1016/j.carbpol.2019.115363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 10/26/2022]
Abstract
Environmental benign cellulosic textiles are hampered by their tendency to absorb water, which restricts their use in functional clothing. Herein we describe a method to functionalize textile surfaces using thin, open coatings based on natural wax particles and natural polymers rendering cellulosic fabrics water-repellent while retaining their feel and breathability. The impact of curing temperature, cationic polymer and fabric properties on wetting and long-term water-repellency were studied using contact angle measurements and scanning electron microscopy. The wetting properties were correlated to roughness of the textiles using white light interferometer. X-ray photoelectron spectroscopy revealed the surface chemical composition, leading to fundamental understanding of the effect of annealing on the wax layer. Breathability was evaluated by water vapor permeability. The optimal curing temperature was 70 °C. The developed coating performed well on different natural textiles, and better than commercial alternatives. A set of garment prototypes were produced using the coating.
Collapse
Affiliation(s)
- Nina Forsman
- Aalto University School of Chemical Engineering, Department of Bioproducts and Biosystems, P.O. Box 16300, 00076 Aalto, Finland
| | - Leena-Sisko Johansson
- Aalto University School of Chemical Engineering, Department of Bioproducts and Biosystems, P.O. Box 16300, 00076 Aalto, Finland
| | - Hanna Koivula
- University of Helsinki, Department of Food and Nutrition, P.O. Box 66, FI-00014 Helsingin Yliopisto, Finland
| | - Matilda Tuure
- Aalto University School of Arts, Design and Architecture, P.O. Box 31000, 00076 Aalto, Finland
| | - Pirjo Kääriäinen
- Aalto University School of Arts, Design and Architecture, P.O. Box 31000, 00076 Aalto, Finland
| | - Monika Österberg
- Aalto University School of Chemical Engineering, Department of Bioproducts and Biosystems, P.O. Box 16300, 00076 Aalto, Finland.
| |
Collapse
|
12
|
Das S, Das A, Parbat D, Manna U. Catalyst-Free and Rapid Chemical Approach for in Situ Growth of "Chemically Reactive" and Porous Polymeric Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34316-34329. [PMID: 31429551 DOI: 10.1021/acsami.9b11113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Design of "chemically reactive" coating with a tailored topography is a simple basis for optimizing various physical and chemical parameters, which is essential for achieving different biomimicked liquid wettability. In general, the essential topography and appropriate chemistry in the superhydrophobic coating is optimized following various top-down and bottom-up approaches, where various hydrophilic building blocks are associated using electrostatic interaction, hydrogen bonding, and other weak bonding (e.g., metal-thiol etc.), for both developing the desired hierarchical features and optimizing the appropriate chemistry on top of this featured interface. Such designs are inappropriate to sustain practically relentlessly harsh settings. So, further development for the synthesis of a durable and substrate-independent superhydrophobic coating is essential for various prospective applications in "real-world" scenarios. However, the design of highly abrasion-tolerant and "absolutely" substrate-independent artificial superhydrophobicity following a simple and scalable synthesis procedure is rare in literature. In this current work, a catalyst-free and facile chemical approach is adopted for an in situ and rapid deposition of a "chemically reactive" nanocomplex for decorating a wide range of substrates, including water-soluble, water-sensitive, highly flexible, rigid, and fibrous substrates with a highly tolerant biomimicked superhydrophobicity property. Branched poly(ethylenimine) (BPEI) and dipentaerythritol pentaacrylate (5Acl) mutually react through 1,4-conjugate addition reaction, and a hierarchically featured "chemically reactive" dip-coating is synthesized by the appropriate selection of the alcoholic solvent that is 1-heptanol. Furthermore, the choice of small alkylamines for post-covalent modifications of the "chemically reactive" dip-coating provided superhydrophobicity with a tailored water adhesion. A gradual increase in both roll-off angles, and the contact angle hysteresis (from 5° to 30°) was noted with a decrease in the hydrocarbon tail of selected alkylamines. The synthesized biomimicked interfaces are capable of performing under various practically relevant, severe physical and chemical challenges including bending, creasing, twisting, different physical abrasions (i.e., adhesive tape peeling test, abrasive sand paper test, etc.), high compressive strain, highly acidic and alkaline aqueous phases, artificial sea water, river water, etc. Moreover, this current approach was extended in developing various relevant functional materials, including superhydrophilic/superhydrophobic physical patterns on flexible papers and highly compressible super-oil-absorbent, etc.
Collapse
|
13
|
Julbe A, Drobek M, Ayral A. About the role of adsorption in inorganic and composite membranes. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lee HA, Ma Y, Zhou F, Hong S, Lee H. Material-Independent Surface Chemistry beyond Polydopamine Coating. Acc Chem Res 2019; 52:704-713. [PMID: 30835432 DOI: 10.1021/acs.accounts.8b00583] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Various methods have been developed in surface chemistry to control interface properties of a solid material. A selection rule among surface chemistries is compatibility between a surface functionalization tool and a target material. For example, alkanethiol deposition on noble metal surfaces, widely known as the formation of a self-assembled monolayer (SAM), cannot be performed on oxide material surfaces. One must choose organosilane molecules to functionalize oxide surfaces. Thus, the surface chemistry strictly depends on the properties of the surface. Polydopamine coating is now generally accepted as the first toolbox for functionalization of virtually any material surface. Layer-by-layer (LbL) assembly is a widely used method to modify properties of versatile surfaces, including organic materials, metal oxides, and noble metals, along with polydopamine coating. On flat solid substrates, the two chemistries of polydopamine coating and LbL assembly provide similar levels of surface modifications. However, there are additional distinct features in polydopamine. First, polydopamine coating is effective for two- or three-dimensional porous materials such as metal-organic frameworks (MOFs), synthetic polyolefin membranes, and others because small-sized dopamine (MW = 153.18 u) and its oxidized oligomers are readily attached onto narrow-spaced surfaces without exhibiting steric hindrance. In contrast, polymers used in LbL assembly are slow in diffusion because of steric hindrance due to their high molecular weight. Second, it is applicable to structurally nonflat surfaces showing special wettability such as superhydrophobicity or superoleophobicity. Third, a nonconducting, insulating polydopamine layer can be converted to be a conducting layer by pyrolysis. The product after pyrolysis is a N-doped graphene-like material that is useful for graphene or carbon nanotube-containing composites. Fourth, it is a suitable method for engineering the surface properties of various composite materials. The surface properties of participating components in composite materials can be unified by polydopamine coating with a simple one-step process. Fifth, a polydopamine layer exhibits intrinsic chemical reactivity by the presence of catecholquinone moieties and catechol radical species on surfaces. Nucleophiles such as amine and thiolate spontaneously react with the functionalized layer. Applications of polydopamine coating are exponentially growing and include cell culture/patterning, microfluidics, antimicrobial surfaces, tissue engineering, drug delivery systems, photothermal therapy, immobilization of photocatalysts, Li-ion battery membranes, Li-sulfur battery cathode materials, oil/water separation, water detoxification, organocatalysts, membrane separation technologies, carbonization, and others. In this Account, we describe various polydopamine coating methods and then introduce a number of chemical derivatives of dopamine that will open further development of material-independent surface chemistry.
Collapse
Affiliation(s)
- Haesung A. Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Daejeon 34141, South Korea
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solidification Processing, College of Materials Science and Technology, Northwestern Polytechnical University, 127 YouyiXi Road, Xi’an 710072, China
| | - Seonki Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Daegu 42988, South Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Daejeon 34141, South Korea
| |
Collapse
|
15
|
Li M, Schlaich C, Willem Kulka M, Donskyi IS, Schwerdtle T, Unger WES, Haag R. Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion. J Mater Chem B 2019. [DOI: 10.1039/c9tb00534j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mussel-inspired coatings with tunable wettability were designed, showing enhanced antibacterial efficiency and reduced bacterial adhesion.
Collapse
Affiliation(s)
- Mingjun Li
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
| | - Christoph Schlaich
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
| | | | - Ievgen S. Donskyi
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
- BAM – Federal Institute for Material Science and Testing
| | - Tanja Schwerdtle
- Institute of Nutritional Science
- Department of Food Chemistry
- University of Potsdam
- D-14558 Nuthetal
- Germany
| | - Wolfgang E. S. Unger
- BAM – Federal Institute for Material Science and Testing
- Division of Surface Analysis and Interfacial Chemistry
- 12205 Berlin
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
| |
Collapse
|
16
|
Behboodi-Sadabad F, Trouillet V, Welle A, Messersmith PB, Levkin PA. Surface Functionalization and Patterning by Multifunctional Resorcinarenes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39268-39278. [PMID: 30335364 DOI: 10.1021/acsami.8b14771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant phenolic compounds and catecholamines have been widely used to obtain substrate-independent precursor nanocoatings and adhesives. Nevertheless, there are downsides in using such phenolic compounds for surface modification such as formation of nonuniform coatings, need for multistep modification, and restricted possibilities for postfunctionalization. In this study, inspired by a strong binding ability of natural polyphenols found in plants, we used three different macrocyclic polyphenols, known as resorcin[4]arenes, to modify the surface of different substrates by simple dip-coating into the dilute solution of these compounds. Eight hydroxyl groups on the large rim of these resorcin[4]arenes provide multiple anchoring points to the surface, whereas the lower rim decorated with different appending groups introduces the desired chemical and physical functionalities to the substrate's surface. Deposition of a uniform and transparent resorcinarene layer on the surface was confirmed by several surface characterization techniques. Incubation of the modified substrates in different environments indicated that the stability of the resorcinarene layer was dependent on the type of substrate and the pH value. The most stable resorcinarene layer was formed on amine-functionalized substrates. The surface was modified with alkenyl functional groups in one step using a resorcinarene compound possessing four alkenyl appending groups on its small rim. Thiol-ene photoclick chemistry was used to site-selectively postfunctionalize the surface with hydrophilic and hydrophobic micropatterns, which was confirmed by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Thus, we demonstrate that resorcin[4]arenes extend the scope of applications of plant polyphenol and mussel-inspired precursors to tailor-made multifunctional nanocoatings, suitable for a variety of potential applications in biotechnology, biology, and material science.
Collapse
Affiliation(s)
- F Behboodi-Sadabad
- Institute of Organic Chemistry (IOC) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | | | | | - Phillip B Messersmith
- Departments of Materials Science and Engineering and Bioengineering , University of California Berkeley , 94720 Berkeley , United States
| | - Pavel A Levkin
- Institute of Organic Chemistry (IOC) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| |
Collapse
|
17
|
Li M, Gao L, Schlaich C, Zhang J, Donskyi IS, Yu G, Li W, Tu Z, Rolff J, Schwerdtle T, Haag R, Ma N. Construction of Functional Coatings with Durable and Broad-Spectrum Antibacterial Potential Based on Mussel-Inspired Dendritic Polyglycerol and in Situ-Formed Copper Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35411-35418. [PMID: 28914053 DOI: 10.1021/acsami.7b10541] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel surface coating with durable broad-spectrum antibacterial ability was prepared based on mussel-inspired dendritic polyglycerol (MI-dPG) embedded with copper nanoparticles (Cu NPs). The functional surface coating is fabricated via a facile dip-coating process followed by in situ reduction of copper ions with a MI-dPG coating to introduce Cu NPs into the coating matrix. This coating has been demonstrated to possess efficient long-term antibacterial properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and kanamycin-resistant E. coli through an "attract-kill-release" strategy. The synergistic antibacterial activity of the coating was shown by the combination of two functions of the contact killing, reactive oxygen species production and Cu ions released from the coating. Furthermore, this coating inhibited biofilm formation and showed good compatibility to eukaryotic cells. Thus, this newly developed Cu NP-incorporated MI-dPG surface coating may find potential application in the design of antimicrobial coating, such as implantable devices.
Collapse
Affiliation(s)
- Mingjun Li
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Lingyan Gao
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Christoph Schlaich
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Jianguang Zhang
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Guozhi Yu
- Institut für Biologie, Freie Universität Berlin , Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Wenzhong Li
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Jens Rolff
- Institut für Biologie, Freie Universität Berlin , Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam , Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Nan Ma
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht , 14513 Teltow, Germany
| |
Collapse
|