1
|
Yoon BK, Jackman JA. Medium-chain fatty acids and monoglycerides: Nanoarchitectonics-based insights into molecular self-assembly, membrane interactions, and applications. Adv Colloid Interface Sci 2025; 340:103465. [PMID: 40056558 DOI: 10.1016/j.cis.2025.103465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Medium-chain fatty acids (FAs) and monoglycerides (MGs) with saturated 6- to 12‑carbon long tails are single-chain lipid amphiphiles that demonstrate significant application merits. Key examples include their antimicrobial activity against antibiotic-resistant bacteria and emerging viral threats as well as innovations in oral pharmaceutics and biorenewable chemical production. These diverse functionalities are enabled by FA and MG self-assembly and their interactions with biological membranes. However, an integrated viewpoint connecting interfacial science principles to the broader application scope remains lacking. The objective of this review is to cover the latest progress in medium-chain FA and MG research and to build connections between molecular self-assembly, membrane interactions, and applications. By taking a bottom-up nanoarchitectonics perspective, we first examine molecular self-assembly principles, including ionization properties and formation of colloidal nanostructures such as micelles and vesicles. We then discuss membrane interaction concepts and experimental findings that illustrate how medium-chain FAs and MGs distinctly interact with phospholipid membranes. Based on this foundation, we highlight cutting-edge applications in medicine, agriculture, drug delivery, and sustainability, linking these advances to interfacial science concepts. In addition, we emphasize the growing convergence of experimental, theoretical, and computational approaches and offer a forward-looking perspective on future research needs and application opportunities.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1 -) Ion and Recent Progress in Boron Substitution. Molecules 2023; 28:6971. [PMID: 37836814 PMCID: PMC10574808 DOI: 10.3390/molecules28196971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
Collapse
Affiliation(s)
- Lucia Pazderová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
- Department of Inorganic Chemistry, Faculty of Natural Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| |
Collapse
|
3
|
Fallah-Totkar H, Bagheri A, Maddah M. The correlation between the micelle morphology of surface-active ionic liquids with self-assembly and thermodynamic characteristics: coarse-grained MD simulation and experiment. Phys Chem Chem Phys 2023; 25:23164-23176. [PMID: 37605522 DOI: 10.1039/d3cp02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Surface-active ionic liquids (SAILs) show great promise as novel green solvents due to their low vapor pressure, high thermal stability, high electrical conductivity, and bio-friendly nature to replace traditional volatile organic solvents in industrial processes. In the present work, the combination of coarse-grained (CG) molecular dynamics (MD) simulations with conductivity measurements was employed to explain the correlation between the micelle morphology and physicochemical and thermodynamic properties of self-assembly. A homologous series of SAIL molecules, 1-n-alkyl-3-methylimidazolium bromide [Cnmim][Br] (n = 4, 6, 8, 10, and 12), were chosen at various concentrations to shed light on this issue. Simultaneously two factors of concentration and alkyl chain length affected the morphology to control the physical and thermodynamic features. Moreover, the nature of the headgroup for two SAILs with the longest alkyl chain was assessed by shifting from imidazolium into ammonium. First, the critical micelle concentration (CMC), the degree of counterion dissociation of micelles, and the standard Gibbs energy of micellization of SAILs were determined using conductivity data. The micelle morphology such as the aggregation number, micelle radius, and moment of inertia was computed before, around, and after the CMC by MD simulation. Simulated results in accordance with the experimental measurements provide a quantitative understanding of the micellar properties. Increasing the alkyl chain length was associated with a non-spherical bigger micelle while the ammonium-based surfactant with a lower repulsion between neighboring monomers in micelles induced bigger and more spherical aggregates. Raising the SAIL concentration did not considerably influence the sphericity of the micelle except for the SAIL with the longest tail. The umbrella sampling method calculated the potential of mean force (PMF) for pulling a monomer of SAIL from a pre-assembled micelle into the solution. The dissociation energy of a SAIL monomer from a micelle increased with the tail length or with shifting into the ammonium head group and was substantially influenced by micelle morphology. Comparison between a sphere micelle with an oval one demonstrated that the dissociation of a SAIL monomer from a non-spherical shape needed a higher amount of energy. An improved understanding of how the shape of the SAIL micelles controls the physicochemical properties and stability helps to extend their application to different chemical processes.
Collapse
Affiliation(s)
- Hajar Fallah-Totkar
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran.
| | - Ahmad Bagheri
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran.
| | - Mina Maddah
- Researcher of Semnan University, Semnan, 35131-19111, Iran
| |
Collapse
|
4
|
Hleli B, Medoš Ž, Ogrin P, Tošner Z, Kereïche S, Gradzielski M, Urbič T, Bešter-Rogač M, Matějíček P. Closo-dodecaborate-based dianionic surfactants with distorted classical morphology: Synthesis and atypical micellization in water. J Colloid Interface Sci 2023; 648:809-819. [PMID: 37327624 DOI: 10.1016/j.jcis.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
HYPOTHESIS To challenge the classical concept of step-like micellization of ionic surfactants with singular critical micelle concentration, novel amphiphilic compounds with bulky dianionic head and the alkoxy tail connected via short linker, which can complex sodium cations, were synthesized in the form of disodium salts. EXPERIMENT The surfactants were synthesized by opening of a dioxanate ring attached to closo-dodecaborate by activated alcohol, which allows for attachment of alkyloxy tails of desired length to boron cluster dianion. The synthesis of the compounds with high cationic purity (sodium salt) is described. Self-assembly of the surfactant compound at air/water interface and in bulk water was studied by tensiometry, light and small angle X-ray scattering, electron microscopy, NMR spectroscopy, MD simulations and by isothermal titration calorimetry, ITC. The peculiarities in the micelle structure and formation were revealed by thermodynamic modelling and MD simulations of the micellization process. FINDINGS In an atypical process, the surfactants self-assemble in water to form relatively small micelles, where the aggregation number is decreasing with the surfactant concentration. The extensive counterion binding is a key characteristic of the micelles. The analysis strongly indicates complex compensation between the degree of bound sodium ions and the aggregation number. For the first time, a three-step thermodynamic model was used to estimate the thermodynamic parameters associated with micellization process. Diverse micelles differing in size and counterion binding can (co-)exist in the solution over the broad concentration and temperature range. Thus, the concept of step-like micellization was found inappropriate for these types of micelles.
Collapse
Affiliation(s)
- Belhssen Hleli
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 40 Prague 2, Czech Republic
| | - Žiga Medoš
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Peter Ogrin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Zdeněk Tošner
- NMR Laboratory, Faculty of Science, Charles University, Hlavova 2030/8, 128 40 Prague 2, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 000 Prague 2, Czech Republic
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie Sekr. TC 7, Technische Universität Berlin, Strasse des 17. Juni 124, D-10623 Berlin, Germany
| | - Tomaž Urbič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Marija Bešter-Rogač
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
5
|
Matsuoka K, Sato A, Ogawa Y, Okazaki K, Yada S, Yoshimura T. Micelle Formation of Dodecanoic Acid with Alkali Metal Counterions. J Oleo Sci 2023; 72:831-837. [PMID: 37648460 DOI: 10.5650/jos.ess23086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Alkali series with different atomic numbers affect the physicochemical properties of aqueous solutions. The micellar properties of aqueous solutions of dodecanoate as surfactants were measured by changing the counterions (C12-Na, C12-K, C12-Rb, and C12-Cs). A plot of Krafft temperature vs. alkali metal atomic number showed a downward convex curve, with its minimum temperature (20°C) in the C12-K system. By contrast, a plot of the critical micelle concentration (CMC) vs. alkali metal atomic number exhibited an upward convex curve with the maximum CMC (25.6 mmol L-1) at C12-K. Furthermore, the minimum surface tension (γ min ) of the solution at the CMC increased with increasing atomic number (C12-Na ≈ C12-K < C12-Rb < C12-Cs). The size of the dodecanoate micelles decreased with increasing atomic number. The ionization degree of the micelles also increased with increasing atomic number of the alkali metal. Small-angle X-ray scattering (SAXS) measurements revealed that alkali dodecanoate micelles formed spherical to ellipsoidal structures. In addition, micelles from the shell region showed large electrostatic repulsion, judging from the shape of the spectrum in the higher Q -1 region. From the measurement results of the solubilization of naphthalene into the micelles, the size of the micelles corresponded to the maximum solubilization quantity of naphthalene.
Collapse
Affiliation(s)
- Keisuke Matsuoka
- Faculty of Education, Laboratory of Chemistry, Saitama University
| | - Aiko Sato
- Faculty of Education, Laboratory of Chemistry, Saitama University
| | - Yukino Ogawa
- Faculty of Education, Laboratory of Chemistry, Saitama University
| | - Kana Okazaki
- Faculty of Education, Laboratory of Chemistry, Saitama University
| | - Shiho Yada
- Department of Chemistry, Faculty of Science and Graduate School of Science, Nara Women's University
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science and Graduate School of Science, Nara Women's University
| |
Collapse
|
6
|
Feng R, Wu Y, Wang W, Fang Y, Chen M, Xia Y. Investigation of polymer−surfactant complexes by both micellar solubilization and pre-column derivatization capillary electrophoresis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
F Garrido P, Rodríguez-Dafonte P, García-Río L, Piñeiro Á. Simple ApproximaTion for Aggregation Number Determination by Isothermal Titration Calorimetry: STAND-ITC. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11781-11792. [PMID: 34570499 DOI: 10.1021/acs.langmuir.1c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new proposal to obtain aggregation numbers from isothermal titration calorimetry dilution experiments is described and tested using dodecyl trimethyl ammonium bromide, dodecyl methylimidazolium chloride, dodecyl methylimidazolium sulfonate, and didecyl methylimidazolium chloride aqueous solutions at different temperatures. The results were compared to those obtained from fluorescence measurements and also with data from the literature. In addition to the aggregation number, the molar free energy to transfer a solute molecule from the aggregate to the bulk solution, the enthalpy corresponding to the formation of the self-assembled suprastructures, the molar heat corresponding to the dilution of monomers and aggregates, and an offset parameter to account for unpredictable external contributions are simultaneously obtained using the same method. The new equations are compared to those obtained from previous proposals, and they are also analyzed in detail to assess the impact of each fitting parameter in the profile of the calorimetric isotherm. This new approach has been implemented in a computational code that automatically determines the fitting parameters as well as the corresponding statistical uncertainties for the large variety of calorimetric profiles that have been tested. Given the high sensitivity of the dilution experiments to the aggregation number for relatively small assemblies, our approach is proposed also to quantify the oligomerization state of biomolecules such as proteins and peptides.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Fisica de Aplicada, Facultade de Fisica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Pedro Rodríguez-Dafonte
- CIQUS, Departamento de Quimica Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Luis García-Río
- CIQUS, Departamento de Quimica Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Fisica de Aplicada, Facultade de Fisica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Čobanov I, Šarac B, Medoš Ž, Tot A, Vraneš M, Gadžurić S, Bešter-Rogač M. Cation isomerism effect on micellization of pyridinium based surface-active ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Spiering VJ, Lutzki J, Gradzielski M. Thermodynamics of micellization of nonionic surfactants – The effect of incorporating CO2 moieties into the head group. J Colloid Interface Sci 2021; 581:794-805. [DOI: 10.1016/j.jcis.2020.07.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
|
10
|
Durand-Vidal S, Bernard O, Medoš Ž, Bešter-Rogač M. Theoretical interpretation of conductivity data below and above the CMC: The case of alkaline ion decanoate solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Medoš Ž, Friesen S, Buchner R, Bešter-Rogač M. Interplay between aggregation number, micelle charge and hydration of catanionic surfactants. Phys Chem Chem Phys 2020; 22:9998-10009. [PMID: 32365150 DOI: 10.1039/d0cp00877j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Catanionic mixtures are commonly used in applications due to synergetic properties of both cationic and anionic surfactants. To better understand the mechanism of the micellization process of salt-free catanionic surfactants, alkyltrimethylammonium alkanecarboxylates, [CxMe3N]+[Cy]-, with medium to long alkyl chains on both cation and anion (x,y = 6-10), were investigated in aqueous solution by density and zeta potential measurements, isothermal titration calorimetry (ITC), and dielectric relaxation spectroscopy (DRS). The obtained ITC data was analysed with the help of a two-step model equation, yielding the thermodynamic parameters, micelle charge and aggregation numbers. Comparison with the "parent" decyltrimethylammonium chloride and sodium decanoate reveals that combined dehydration of both alkyl chains increases entropy upon micellization. In the first step neutral smaller micelles with partly dehydrated alkyl chains are formed, while in the second step larger charged micelles with fully dehydrated alkyl chains are equally favourable. At low temperature both formations are thermodynamically equivalent, while with increasing temperature neutral micelles become more entropically favourable and charged micelles more enthalpically favourable. The resulting average micelle charge and average aggregation number are decreasing with temperature. From the DRS spectra, effective hydration numbers of the free monomers and micelles were deduced and are comparable to the "parent" cationic surfactant micelles.
Collapse
Affiliation(s)
- Žiga Medoš
- Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Sergej Friesen
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053 Regensburg, Germany.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053 Regensburg, Germany.
| | - Marija Bešter-Rogač
- Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Čobanov I, Šarac B, Medoš Ž, Tot A, Vraneš M, Gadžurić S, Bešter-Rogač M. Thermodynamic and computational study of isomerism effect at micellization of imidazolium based surface-active ionic liquids: Counterion structure. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Matějíček P. Erratic ions: self-assembly and coassembly of ions of nanometer size and of irregular structure. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Medoš Ž, Plechkova NV, Friesen S, Buchner R, Bešter-Rogač M. Insight into the Hydration of Cationic Surfactants: A Thermodynamic and Dielectric Study of Functionalized Quaternary Ammonium Chlorides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3759-3772. [PMID: 30754971 PMCID: PMC6727610 DOI: 10.1021/acs.langmuir.8b03993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Indexed: 05/31/2023]
Abstract
Hydrophobic interactions are one of the main thermodynamic driving forces in self-assembly, folding, and association processes. To understand the dehydration-driven solvent exposure of hydrophobic surfaces, the micellization of functionalized decyldimethylammonium chlorides, XC10Me2N+Cl-, with a polar functional group, X = C2OH, C2OMe, C2OC2OMe, C2OOEt, together with the "reference" compound decyltrimethylammonium chloride, C10Me3N+Cl-, was investigated in aqueous solution by density measurements, isothermal titration calorimetry (ITC), and dielectric relaxation spectroscopy (DRS). From the density data, the apparent molar volumes of monomers and micelles were estimated, whereas the ITC data were analyzed with the help of a model equation, yielding the thermodynamic parameters and aggregation number. From the DRS spectra, effective hydration numbers of the free monomers and micelles were deduced. The comprehensive analysis of the obtained results shows that the thermodynamics of micellization are strongly affected by the nature of the functional group. Surprisingly, the hydration of micelles formed by surfactant cations with a single alkyl chain on quaternary ammonium is approximately the same, regardless of the alkyl chain length or functionalization of the headgroup. However, notable differences were found for the free monomers where increasing polarity lowers the effective hydration number.
Collapse
Affiliation(s)
- Žiga Medoš
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Natalia V. Plechkova
- QUILL,
The Queen’s University of Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG, U.K.
| | - Sergej Friesen
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93053 Regensburg, Germany
| | - Richard Buchner
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93053 Regensburg, Germany
| | - Marija Bešter-Rogač
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Effect of cationic structure of surface active ionic liquids on their micellization: A thermodynamic study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Fernandez-Alvarez R, Medoš Ž, Tošner Z, Zhigunov A, Uchman M, Hervø-Hansen S, Lund M, Bešter-Rogač M, Matějíček P. Total Description of Intrinsic Amphiphile Aggregation: Calorimetry Study and Molecular Probing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14448-14457. [PMID: 30343575 DOI: 10.1021/acs.langmuir.8b03462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isothermal titration calorimetry (ITC) is an apt tool for a total thermodynamic description of self-assembly of atypical amphiphiles such as anionic boron cluster compounds (COSAN) in water. Global fitting of ITC enthalpograms reveals remarkable features that differentiate COSAN from classical amphiphiles: (i) strong enthalpy and weak entropy contribution to the free energy of aggregation, (ii) low degree of counterion binding, and (iii) very low aggregation number, leading to deviations from the ideal closed association model. The counterion condensation obtained from the thermodynamic model was compared with the results of 7Li DOSY NMR of Li[COSAN] micelles, which allows direct tracking of Li cations. The basic thermodynamic study of COSAN alkaline salt aggregation was complemented by NMR and ITC experiments in dilute Li/NaCl and acetonitrile aqueous solutions of COSAN. The strong affinity of acetonitrile molecules to COSAN clusters was microscopically investigated by all-atomic molecular dynamics simulations. The impact of ionic strength on COSAN self-assembling was comparable to the behavior of classical amphiphiles, whereas even a small amount of acetonitrile cosolvent has a pronounced nonclassical character of COSAN aggregation. It demonstrates that large self-assembling changes are triggered by traces of organic solvents.
Collapse
Affiliation(s)
| | - Žiga Medoš
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | | | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, v.v.i. , Academy of Sciences of the Czech Republic , Heyrovský Sq. 2 , 16206 Prague 6 , Czechia
| | | | - Stefan Hervø-Hansen
- Division of Theoretical Chemistry , University of Lund , P.O. Box 124, SE-22100 Lund , Sweden
| | - Mikael Lund
- Division of Theoretical Chemistry , University of Lund , P.O. Box 124, SE-22100 Lund , Sweden
| | - Marija Bešter-Rogač
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | | |
Collapse
|
17
|
Vázquez-Tato MP, Meijide F, Seijas JA, Fraga F, Vázquez Tato J. Analysis of an old controversy: The compensation temperature for micellization of surfactants. Adv Colloid Interface Sci 2018; 254:94-98. [PMID: 29580548 DOI: 10.1016/j.cis.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The actual significance of the so-called compensation temperature Tc for micellization of surfactants is reviewed. It is demonstrated that it is possible to obtain as many Tc values as the number of temperature intervals in which the dependencies of enthalpy and entropy changes with temperature are analyzed. The value of each Tc will be the central value To of each temperature interval. These two facts suggest that Tc is simply such experimental To. Thus any physical interpretation derived from Tc is unfounded.
Collapse
Affiliation(s)
- M Pilar Vázquez-Tato
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - Francisco Meijide
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - Julio A Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - Francisco Fraga
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - José Vázquez Tato
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain.
| |
Collapse
|
18
|
Soto VH, Vázquez-Tato MP, Meijide F, Alvarado MJ, Seijas JA, de Frutos S, Lomonte B, Vázquez Tato J. Aggregation behavior of sodium 3-(octyloxy)-4-nitrobenzoate in aqueous solution. NEW J CHEM 2018. [DOI: 10.1039/c8nj03440k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-(Octyloxy)-4-nitrobenzoate, a PLA2 inhibitor, is a better surfactant than other octyl derivatives and can be used as a model for 3-(octanoyloxy)-4-nitrobenzoic acid.
Collapse
Affiliation(s)
- Victor H. Soto
- Escuela de Química
- Centro de Investigación en Electroquímica y Energía Química (CELEQ)
- Universidad de Costa Rica
- San José
- Costa Rica
| | - M. Pilar Vázquez-Tato
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - Francisco Meijide
- Departamento de Química Física
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - María José Alvarado
- Escuela de Química
- Centro de Investigación en Electroquímica y Energía Química (CELEQ)
- Universidad de Costa Rica
- San José
- Costa Rica
| | - Julio A. Seijas
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - Santiago de Frutos
- Departamento de Química Física
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado
- Facultad de Microbiología
- Universidad de Costa Rica
- San José 11501
- Costa Rica
| | - José Vázquez Tato
- Departamento de Química Física
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| |
Collapse
|
19
|
Uchman M, Abrikosov AI, Lepšík M, Lund M, Matějíček P. Nonclassical Hydrophobic Effect in Micellization: Molecular Arrangement of Non-Amphiphilic Structures. ADVANCED THEORY AND SIMULATIONS 2017. [DOI: 10.1002/adts.201700002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariusz Uchman
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Alexei I. Abrikosov
- Division of Physical Chemistry; University of Lund; Lund Sweden
- Materials Modeling and Development Laboratory; National University of Science and Technology ‘MISIS’; Moscow Russia
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Prague 6 Czech Republic
| | - Mikael Lund
- Division of Theoretical Chemistry; University of Lund; Lund Sweden
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague 2 Czech Republic
| |
Collapse
|