1
|
Anosov AA, Smirnova EY, Korepanova EA, Kazamanov VA, Derunets AS. Different effects of two Poloxamers (L61 and F68) on the conductance of bilayer lipid membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:14. [PMID: 36920579 DOI: 10.1140/epje/s10189-023-00270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The integral conductance of planar lipid bilayer membranes in the presence of two Poloxamers (Pluronics) L61 and F68 with the same lengths of hydrophobic poly(propylene oxide) blocks and the different lengths of hydrophilic poly(ethylene oxide) blocks increases with an increase in the concentration of both Pluronics; however, the shape of the conductance-concentration curves is super linear for L61 and sublinear for F68. In the presence of both Pluronics, rare discrete current jumps are observed against the background of continuous current. At high concentrations, the I-V curves of membranes with both L61 and F68 became nonlinear at sufficiently low voltages but differed significantly. At voltages greater than 50 mV, the conductance of membranes with L61 increased sharply and quantized jumps were observed toward higher conductance, which could be interpreted as the appearance of additional pores. On the contrary, the conductance of membranes with F68 decreased and quantized jumps to lower conductance were observed, which could be interpreted as blocking of already existing pores. We attributed the differences in the conductance-concentration and I-V curves of these two Pluronics to their different effects on the dynamics of membrane hydration and, accordingly, on the probability of formation of conducting pores.
Collapse
Affiliation(s)
- A A Anosov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Moscow, Russia
| | - E Yu Smirnova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E A Korepanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V A Kazamanov
- MIREA-Russian Technological University, Moscow, Russia
| | - A S Derunets
- National Research Center Kurchatov Institute, Moscow, Russia.
| |
Collapse
|
2
|
Ziolek RM, Smith P, Pink DL, Dreiss CA, Lorenz CD. Unsupervised Learning Unravels the Structure of Four-Arm and Linear Block Copolymer Micelles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert M. Ziolek
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| | - Paul Smith
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| | - Demi L. Pink
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| | - Cécile A. Dreiss
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, U.K
| | - Christian D. Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| |
Collapse
|
3
|
De Mel JU, Gupta S, Willner L, Allgaier J, Stingaciu LR, Bleuel M, Schneider GJ. Manipulating Phospholipid Vesicles at the Nanoscale: A Transformation from Unilamellar to Multilamellar by an n-Alkyl-poly(ethylene oxide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2362-2375. [PMID: 33570419 PMCID: PMC8023706 DOI: 10.1021/acs.langmuir.0c03302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Indexed: 05/05/2023]
Abstract
We investigated the influence of an n-alkyl-PEO polymer on the structure and dynamics of phospholipid vesicles. Multilayer formation and about a 9% increase in the size in vesicles were observed by cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and small-angle neutron/X-ray scattering (SANS/SAXS). The results indicate a change in the lamellar structure of the vesicles by a partial disruption caused by polymer chains, which seems to correlate with about a 30% reduction in bending rigidity per unit bilayer, as revealed by neutron spin echo (NSE) spectroscopy. Also, a strong change in lipid tail relaxation was observed. Our results point to opportunities using synthetic polymers to control the structure and dynamics of membranes, with possible applications in technical materials and also in drug and nutraceutical delivery.
Collapse
Affiliation(s)
- Judith U. De Mel
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudipta Gupta
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lutz Willner
- Jülich
Center for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8) Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Jürgen Allgaier
- Jülich
Center for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8) Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Laura R. Stingaciu
- Neutron
Sciences Directorate, Oak Ridge National
Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Markus Bleuel
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8562, United States
| | - Gerald J. Schneider
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Rodriguez-Palomo A, Lutz-Bueno V, Cao X, Kádár R, Andersson M, Liebi M. In Situ Visualization of the Structural Evolution and Alignment of Lyotropic Liquid Crystals in Confined Flow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006229. [PMID: 33502102 DOI: 10.1002/smll.202006229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Self-assembled materials such as lyotropic liquid crystals offer a wide variety of structures and applications by tuning the composition. Understanding materials behavior under flow and the induced alignment is wanted in order to tailor structure related properties. A method to visualize the structure and anisotropy of ordered systems in situ under dynamic conditions is presented where flow-induced nanostructural alignment in microfluidic channels is observed by scanning small angle X-ray scattering in hexagonal and lamellar self-assembled phases. In the hexagonal phase, the material in regions with high extensional flow exhibits orientation perpendicular to the flow and is oriented in the flow direction only in regions with a high enough shear rate. For the lamellar phase, a flow-induced morphological transition occurs from aligned lamellae toward multilamellar vesicles. However, the vesicles do not withstand the mechanical forces and break in extended lamellae in regions with high shear rates. This evolution of nanostructure with different shear rates can be correlated with a shear thinning viscosity curve with different slopes. The results demonstrate new fundamental knowledge about the structuring of liquid crystals under flow. The methodology widens the quantitative investigation of complex structures and identifies important mechanisms of reorientation and structural changes.
Collapse
Affiliation(s)
| | - Viviane Lutz-Bueno
- Swiss Light Source, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Xiaobao Cao
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Centre for X-ray Analytics, St. Gallen, 9014, Switzerland
| |
Collapse
|
5
|
El-Emam GA, Girgis GNS, El-Sokkary MMA, El-Azeem Soliman OA, Abd El Gawad AEGH. Ocular Inserts of Voriconazole-Loaded Proniosomal Gels: Formulation, Evaluation and Microbiological Studies. Int J Nanomedicine 2020; 15:7825-7840. [PMID: 33116503 PMCID: PMC7567543 DOI: 10.2147/ijn.s268208] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Voriconazole (VRC) is a triazole broad spectrum antifungal drug, used in the management of versatile fungal infections, particularly fungal keratitis. The obligatory use of niosomal delivery of VRC may reduce the frequency of dosing intervals resulting from its short biological half time and consequently improve patient compliance. METHODS VRC loaded proniosomes (VRC-PNs) were set by the coacervation technique and completely characterized. The developed formula was comprehensively assessed concerning in- vitro release behavior, kinetic investigation, and its conflict against refrigerated and room temperature conditions. A selected noisomal formula was incorporated into ocusert (VRC-PNs Ocu) formulated by 1% w/w hydroxypropyl methyl cellulose HPMC and 0.1% w/w carbopol 940. Eventually, in vitro antifungal activity against Candida albicans and Aspergillus nidulans was assessed by the cup diffusion method. RESULTS The optimized VRC-PNs (Pluronic F127: cholesterol weight ratio 1:1 w/w) exhibited the highest entrapment efficiency (87.4±2.55%) with a spherical shape, proper size in nano range and a suitable Zeta potential of 209.7±8.13 nm and -33.5±1.85 mV, respectively. Assurance of drug encapsulation in nanovesicles was accomplished by several means such as attenuated total reflection Fourier-transform infrared spectroscopy, differential scanning calorimetry in addition to powder X-ray diffraction investigations. It displayed a biphasic in vitro release pattern and after 6 months of storage at a refrigerated temperature, the optimized formula preserved its stability. VRC-PNs Ocu proved a very highly significant antifungal activity matched with the free drug or nanosuspension which was extra assured by comparing its mean inhibition zone with that of 5% natamycin market eye drops. CONCLUSION In conclusion, VRC-PNs Ocu could be considered as a promising stable sustained release topical ocular nanoparticulate system for the management of fungal infections.
Collapse
Affiliation(s)
- Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Germeen N S Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | | |
Collapse
|
6
|
Calori IR, Caetano W, Tedesco AC, Hioka N. Determination of critical micelle temperature of Pluronic® in Pluronic/gel phase liposome mixtures using steady-state anisotropy. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
8
|
Zaki AM, Carbone P. Amphiphilic copolymers change the nature of the ordered-to-disordered phase transition of lipid membranes from discontinuous to continuous. Phys Chem Chem Phys 2019; 21:13746-13757. [PMID: 31209450 DOI: 10.1039/c9cp01293a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase behaviour as a function of temperature is explored for pure phospholipid (DPPC) and hybrid lipid-polymer (DPPC/Pluronic L64) bilayers with the aid of atomistic MD simulations. The range of the fixed-temperature simulations includes temperatures below and above the known melting temperature (Tm) for DPPC membranes. For the pure lipid bilayer, the main phase transition is discontinuous, as verified by the abrupt changes observed in the membrane structure, elasticity and the lipid diffusivity near the critical temperature Tm, which lies in the region 298.15-303.15 K. A pre-transition step is detected at 298.15 K which has been identified as the ripple phase (Pβ'), where ordered and disordered lipids coexist, causing thickness fluctuations. In the ordered gel phase, the positional ordering as assessed by the lipid radial distribution functions is long-range and some degree of hexagonal packing is measured. The hybrid bilayers on the other hand, transform from a more ordered to a disordered phase in a continuous manner, without finite jumps in their properties. No signs of the ripple phase are identified and the ordered phase exhibits very limited hexagonal packing and some positional ordering that decays fast. The effect of the inserted polymers in the two phases is reversed; at low temperatures, they render the membrane thinner, less cohesive and less ordered compared to the pure one, with the lipids assuming faster diffusion rates, whereas at high temperatures, the polymer interaction with the lipids acts reducing their diffusivity, but also increasing the lipid tail ordering and the membrane stiffness. The ability of the amphiphilic L64 copolymers to change the nature of the main phase transition of lipid membranes and their properties both in the ordered and the disordered phase is of vital importance for the prediction of both the efficacy of hybrid lipid/polymer nanoparticles as drug delivery vehicles as well as their potential adverse implications during interactions with healthy cell membranes.
Collapse
Affiliation(s)
- Afroditi Maria Zaki
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | |
Collapse
|
9
|
Jefferies D, Shearer J, Khalid S. Role of O-Antigen in Response to Mechanical Stress of the E. coli Outer Membrane: Insights from Coarse-Grained MD Simulations. J Phys Chem B 2019; 123:3567-3575. [DOI: 10.1021/acs.jpcb.8b12168] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Jonathan Shearer
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
10
|
Pasquino R, Droghetti H, Carbone P, Mirzaagha S, Grizzuti N, Marchisio D. An experimental rheological phase diagram of a tri-block co-polymer in water validated against dissipative particle dynamics simulations. SOFT MATTER 2019; 15:1396-1404. [PMID: 30633291 DOI: 10.1039/c8sm01959b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aqueous solutions of tri-block co-polymer surfactants are able to aggregate into a rich variety of microstructures, which can exhibit different rheological behaviors. In this work, we study the diversity of structures detected in aqueous solutions of Pluronic L64 at various concentrations and temperatures by experimental rheometry and dissipative particle dynamics (DPD) simulations. Mixtures of Pluronic L64 in water (ranging from 0 to 90 wt% Pluronic L64) have been studied in both linear and non-linear regimes by oscillatory and steady shear flow. The measurements allowed for the determination of a complete rheological phase diagram of the Pluronic L64-water system. The linear and non-linear regimes have been compared to equilibrium and non-equilibrium DPD bulk simulations of similar systems obtained by using the software LAMMPS. The molecular results are capable of reproducing the equilibrium structures, which are in complete agreement with the ones predicted through experimental linear rheology. The simulations also depict micellar microstructures after long time periods when a strong flow is applied. These structures are directly compared, from a qualitative point of view, with the corresponding experimental results and differences between the equilibrium and non-equilibrium phase diagrams are highlighted, proving the capability of detecting morphological changes caused by deformation in both experiments and DPD simulations. The effect of temperature on the rheology of the systems has been eventually investigated and compared with the already existing non-rheological phase diagram.
Collapse
Affiliation(s)
- Rossana Pasquino
- Department of Chemical, Materials and Industrial Production, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Raman AS, Pajak J, Chiew Y. Interaction of PCL based self-assembled nano-polymeric micelles with model lipid bilayers using coarse-grained molecular dynamics simulations. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Houang EM, Sham YY, Bates FS, Metzger JM. Muscle membrane integrity in Duchenne muscular dystrophy: recent advances in copolymer-based muscle membrane stabilizers. Skelet Muscle 2018; 8:31. [PMID: 30305165 PMCID: PMC6180502 DOI: 10.1186/s13395-018-0177-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
The scientific premise, design, and structure-function analysis of chemical-based muscle membrane stabilizing block copolymers are reviewed here for applications in striated muscle membrane injury. Synthetic block copolymers have a rich history and wide array of applications from industry to biology. Potential for discovery is enabled by a large chemical space for block copolymers, including modifications in block copolymer mass, composition, and molecular architecture. Collectively, this presents an impressive chemical landscape to leverage distinct structure-function outcomes. Of particular relevance to biology and medicine, stabilization of damaged phospholipid membranes using amphiphilic block copolymers, classified as poloxamers or pluronics, has been the subject of increasing scientific inquiry. This review focuses on implementing block copolymers to protect fragile muscle membranes against mechanical stress. The review highlights interventions in Duchenne muscular dystrophy, a fatal disease of progressive muscle deterioration owing to marked instability of the striated muscle membrane. Biophysical and chemical engineering advances are presented that delineate and expand upon current understanding of copolymer-lipid membrane interactions and the mechanism of stabilization. The studies presented here serve to underscore the utility of copolymer discovery leading toward the therapeutic application of block copolymers in Duchenne muscular dystrophy and potentially other biomedical applications in which membrane integrity is compromised.
Collapse
Affiliation(s)
- Evelyne M. Houang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
| | - Yuk Y. Sham
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
- University of Minnesota Informatics Institute, MN, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, MN, USA
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, MN, USA
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455 USA
| |
Collapse
|