1
|
Schechtel E, Dören R, Frerichs H, Panthöfer M, Mondeshki M, Tremel W. Mixed Ligand Shell Formation upon Catechol Ligand Adsorption on Hydrophobic TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12518-12531. [PMID: 31487189 DOI: 10.1021/acs.langmuir.9b02496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modifying the surfaces of metal oxide nanoparticles (NPs) with monolayers of ligands provides a simple and direct method to generate multifunctional coatings by altering their surface properties. This works best if the composition of the monolayers can be controlled. Mussel-inspired, noninnocent catecholates stand out from other ligands like carboxylates and amines because they are redox-active and allow for highly efficient surface binding and enhanced electron transfer to the surface. However, a comprehensive understanding of their surface chemistry, including surface coverage and displacement of the native ligand, is still lacking. Here, we unravel the displacement of oleate (OA) ligands on hydrophobic, OA-stabilized TiO2 NPs by catecholate ligands using a combination of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques. Conclusive pictures of the ligand shells before and after surface modification with catecholate were obtained by 1H and 13C NMR spectroscopy (the 13C chemical shift being more sensitive and with a broader range). The data could be explained using a Langmuir-type approach. Gradual formation of a mixed ligand shell was observed, and the surface processes of catecholate adsorption and OA desorption were quantified. Contrary to the prevailing view, catecholate displaces only a minor fraction (∼20%) of the native OA ligand shell. At the same time, the total ligand density more than doubled from 2.3 nm-2 at native oleate coverage to 4.8 nm-2 at maximum catecholate loading. We conclude that the catecholate ligand adsorbs preferably to unoccupied Ti surface sites rather than replacing native OA ligands. This unexpected behavior, reminiscent of the Vroman effect for protein corona formation, appears to be a fundamental feature in the widely used surface modification of hydrophobic metal oxide NPs with catecholate ligands. Moreover, our findings show that ligand displacement on OA-capped TiO2 NPs is not suited for a full ligand shell refunctionalization because it produces only mixed ligand shells. Therefore, our results contribute to a better understanding and performance of photocatalytic applications based on catecholate ligand-sensitized TiO2 NPs.
Collapse
Affiliation(s)
- Eugen Schechtel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - René Dören
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Hajo Frerichs
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Martin Panthöfer
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Mihail Mondeshki
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| |
Collapse
|
2
|
Kocsis K, Niedermaier M, Kasparek V, Bernardi J, Redhammer G, Bockstedte M, Berger T, Diwald O. From Anhydrous Zinc Oxide Nanoparticle Powders to Aqueous Colloids: Impact of Water Condensation and Organic Salt Adsorption on Free Exciton Emission. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8741-8747. [PMID: 31244249 PMCID: PMC7116045 DOI: 10.1021/acs.langmuir.9b00656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Variations in the composition and structure of ZnO nanoparticle interfaces have a key influence on the materials' optoelectronic properties and are responsible for high number of discrepant results reported for ZnO-based nanomaterials. Here, we conduct a systematic study of the room-temperature photoluminescence of anhydrous ZnO nanocrystals, as synthesized in the gas phase and processed in water-free atmosphere, and of their colloidal derivatives in aqueous dispersions with varying amounts of organic salt admixtures. A free exciton band at hν = 3.3 eV is essentially absent in the anhydrous ZnO nanocrystal powders measured in vacuum or in oxygen atmosphere. Surface hydration of the nanoparticles during colloid formation leads to the emergence of the free exciton band at hν = 3.3 eV and induces a small but significant release in lattice strain as detected by X-ray diffraction. Most importantly, admixture of acetate or citrate ions to the aqueous colloidal dispersions not only allows for the control of the ζ-potential but also affects the intensity of the free exciton emission in a correlated manner. The buildup of negative charge at the solid-liquid interface, as produced by citrate adsorption, increases the free exciton emission. This effect is attributed to the suppression of electron trapping in the near-surface region, which counteracts nonradiative exciton recombination. Using well-defined ZnO nanoparticles as model systems for interface chemistry studies, our findings highlight water-induced key effects that depend on the composition of the aqueous solution shell around the semiconducting metal oxide nanoparticles.
Collapse
Affiliation(s)
- Krisztina Kocsis
- Department of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Matthias Niedermaier
- Department of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Vít Kasparek
- Central European Institute of Technology, Brno University of
Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Johannes Bernardi
- University Service Centre for Transmission Electron
Microscopy, Technische Universität Wien, 1040 Vienna, Austria
| | - Günther Redhammer
- Department of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Michel Bockstedte
- Department of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Thomas Berger
- Department of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Kocsis K, Niedermaier M, Schwab T, Kasparek V, Berger T, Diwald O. Exciton Emission and Light induced Charge Separation in colloidal ZnO Nanocrystals. CHEMPHOTOCHEM 2018; 2:994-1001. [PMID: 32895634 DOI: 10.1002/cptc.201800104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adsorption of organic molecules at ZnO nanoparticle surfaces enables the transfer of energy or charge across resulting organic-inorganic interfaces and, consequently, determines the optoelectronic performance of ZnO based hybrids. We investigated on aqueous colloidal ZnO dispersions adsorption-induced changes with photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopy. Citrate and acetate ion adsorption increases or decreases radiative exciton annihilation at hν = 3.3 eV and at room temperature, respectively. Searching for a correspondence between PL emission and the yield of trapped charge carriers originating from exciton separation - using photon energies of hν = 4.6 eV and fluxes of = 1014 cm-2 s-1 for excitation - we found that there is a negligible fraction of paramagnetic products that originate from exciton separation. Upon polychromatic excitation with significantly higher photon fluxes (Ṅ ph = 1016 cm-2·s-1), ZnO specific shallow defects trap unpaired electrons in citrate and acetate functionalized samples. The adsorption dependent PL intensity changes and the excitation parameter dependent yield of separated charges (EPR) in colloidal ZnO nanoparticles underline that the distribution over the different exciton annihilation channels sensitively depends on interface composition and the intensity of the photoexcitation light.
Collapse
Affiliation(s)
- K Kocsis
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg
| | - M Niedermaier
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg
| | - T Schwab
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg
| | - V Kasparek
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 612 00, Czech Republic
| | - T Berger
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg
| | - O Diwald
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, A-5020 Salzburg
| |
Collapse
|
4
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
5
|
Süß S, Sobisch T, Peukert W, Lerche D, Segets D. Determination of Hansen parameters for particles: A standardized routine based on analytical centrifugation. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|