1
|
Wu L, Xin Y, Zhang J, Cui F, Chen T, Chen L, Ma J, Niu P. Metabolic signatures of population exposure to metal mixtures: A metabolome-wide association study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124673. [PMID: 39103040 DOI: 10.1016/j.envpol.2024.124673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Numerous studies have explored the health impacts of individual metal exposures, yet the effects of metal mixtures on human endogenous metabolism remain largely unexplored. We aimed to assess the serum metabolic signatures of people exposed to metal mixtures. Serum and urine samples were collected from 186 workers at a steel factory in Anhui, China, in September 2019. Inductively coupled plasma mass spectrometry was used to analyze the concentrations of 23 metal elements. The serum metabolome was determined by liquid chromatography-mass spectrometry (LC-MS). A metabolome-wide association study (MWAS) was performed across the metal exposures and metabolism using quantile g-computation modeling. Pathway enrichment analysis was performed using MetaboAnalyst. We identified 226 metabolites associated with metal mixtures, primarily involving lipid metabolism (glycerophospholipids, sphingolipids), amino acid metabolism (arginine and proline, alanine, aspartate and glutamate metabolism) and caffeine metabolic pathways. Exposure to metal mixtures is mainly associated with alterations in lipid metabolism and amino acid metabolism, particularly in the glycerophospholipid and arginine and proline metabolism pathways.
Collapse
Affiliation(s)
- Luli Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China
| | - Ye Xin
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China
| | - Fengtao Cui
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China; Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, 235000, Huaibei, Anhui Province, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
2
|
Manori B, Vaknin A, Vaňková P, Nitzan A, Zaidel-Bar R, Man P, Giladi M, Haitin Y. Chloride intracellular channel (CLIC) proteins function as fusogens. Nat Commun 2024; 15:2085. [PMID: 38453905 PMCID: PMC10920813 DOI: 10.1038/s41467-024-46301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.
Collapse
Grants
- 1721/16 Israel Science Foundation (ISF)
- 1653/21 Israel Science Foundation (ISF)
- 3308/20 Israel Science Foundation (ISF)
- 01214 Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
- 19202 Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
- 20230029 Israel Cancer Association (ICA)
- CZ.1.05/1.1.00/02.0109 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky (Ministry of Education, Science, Research and Sport of the Slovak Republic)
- 731077 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- The Claire and Amedee Maratier Institute for the Study of Blindness and Visual Disorders, Faculty of Medicine, Tel-Aviv University.
- The Czech Infrastructure for Integrative Structural Biology (CIISB) grant (LM2023042).
- The Kahn Foundation's Orion project, Tel Aviv Sourasky Medical Center, Israel. The Claire and Amedee Maratier Institute for the Study of Blindness and Visual Disorders, Faculty of Medicine, Tel-Aviv University.
Collapse
Affiliation(s)
- Bar Manori
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Alisa Vaknin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Pavla Vaňková
- Institute of Biotechnology of the Czech Academy of Sciences, Division BioCeV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, Division BioCeV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel.
- Tel Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel.
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
3
|
Fukunaga Y, Zandieh M, Liu Y, Liu J. Salt-Induced Adsorption and Rupture of Liposomes on Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16395-16403. [PMID: 37934056 DOI: 10.1021/acs.langmuir.3c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Microplastics have attracted considerable attention because of concerns regarding their environmental risks to living systems. The interaction between the lipid bilayer and microplastics is important for examining the potential harm to biological membranes in the presence of microplastics. In addition, membrane coatings may change the surface and colloidal properties of microplastics. Herein, phosphatidylcholine (PC) lipids, whose headgroup is most common in cell membranes, were used as model lipids. The adsorption and rupture of PC liposomes on microplastics were systematically studied. We found that divalent metal ions, such as Mg2+ and Ca2+, facilitate liposome adsorption onto microplastics and induce 40-55% liposome leakage at 2.5 mM. In contrast, to achieve a similar effect, 300 mM Na+ was required. Adsorption and rupture followed the same metal concentration requirements, suggesting that liposome adsorption was the rate-limiting step. After adsorption with liposomes, microplastics became more hydrophilic and were better dispersed in water. A similar behavior was observed for all five types of tested microplastics, including PP, PE, PVC, PET, and PS. Leakage also occurred in ocean water. This study provides fundamental insights into the interactions between liposomes and microplastics and has implications for the colloidal and transport properties of microplastics.
Collapse
Affiliation(s)
- Yu Fukunaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Dillion Lima Cavalcanti I, Humberto Xavier Junior F, Stela Santos Magalhães N, Cajubá de Britto Lira Nogueira M. ISOTHERMAL TITRATION CALORIMETRY (ITC) AS A PROMISING TOOL IN PHARMACEUTICAL NANOTECHNOLOGY. Int J Pharm 2023; 641:123063. [PMID: 37209790 DOI: 10.1016/j.ijpharm.2023.123063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Isothermal titration calorimetry (ITC) is a technique for evaluating the thermodynamic profiles of connection between two molecules, allowing the experimental design of nanoparticles systems with drugs and/or biological molecules. Taking into account the relevance of ITC, we conducted, therefore, an integrative revision of the literature, from 2000 to 2023, on the main purposes of using this technique in pharmaceutical nanotechnology. The search were carried out in the Pubmed, Sciencedirect, Web of Science, and Scifinder databases using the descriptors "Nanoparticles", "Isothermal Titration Calorimetry", and "ITC". We have observed that the ITC technique has been increasingly used in pharmaceutical nanotechnology, seeking to understand the interaction mechanisms in the formation of nanoparticles. Additionally, to understand the behavior of nanoparticles with biological materials (proteins, DNA, cell membranes, among others), thereby helping to understand the behavior of nanocarriers in vivo studies. As a contribution, we intended to reveal the importance of ITC in the laboratory routine, which is itself a quick and easy technique to obtain relevant results that help to optimize the nanosystems formulation process.
Collapse
Affiliation(s)
- Iago Dillion Lima Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Francisco Humberto Xavier Junior
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Department of Pharmacy, Pharmaceutical Biotechnology Laboratory (BioTecFarm), Federal University of Paraíba (UFPB), Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nereide Stela Santos Magalhães
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória, Federal University of Pernambuco (CAV/UFPE), R. Alto do Reservatório - Alto José Leal, Vitória de Santo Antão - PE, 55608-680, Brazil.
| |
Collapse
|
5
|
Dong Y, Fu L, Song J, Zhang S, Li X, Fang W, Cui Q, Gao L. Thermodynamic Driving Forces for Divalent Cations Binding to Zwitterionic Phospholipid Membranes. J Phys Chem Lett 2022; 13:11237-11244. [PMID: 36448843 DOI: 10.1021/acs.jpclett.2c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We calculated the free energies for calcium, magnesium, and zinc ions binding to a zwitterionic phospholipid bilayer by using molecular dynamics simulations and the enhanced umbrella sampling technique. By decomposing the free energy into entropic and enthalpic contributions, we found that Ca2+ has the highest binding affinity and that the overall process is endothermic combined with a secondary exothermic process at higher ion concentrations. The relatively low dehydration free energy of Ca2+ allows it to release coordinated water upon binding to the membrane. The dehydrated Ca2+ further coordinates with lipids, resulting in a weaker influence on the water orientation and increased entropy. However, when sufficient Ca2+ ions are adsorbed, the concentrated cation layer induces a positive electrostatic field, which enhances the energy barrier for further ion binding and orients the adjacent water, resulting in decreased entropy. In contrast, binding of Mg2+ and Zn2+ is exothermic and less favored because they remain fully hydrated when interacting with lipids.
Collapse
Affiliation(s)
- Yi Dong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing100875, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing100875, China
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts02215, United States
| | - Junjie Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing100875, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing100875, China
| | - Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing100875, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing100875, China
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts02215, United States
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing100875, China
| |
Collapse
|
6
|
Yuan J, Wu W, Guo L, Hao J, Dong S. Multistimuli-Responsive and Antifreeze Aggregation-Induced Emission-Active Gels Based on CuNCs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:343-351. [PMID: 34939818 DOI: 10.1021/acs.langmuir.1c02592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multistimuli-responsive fluorescent gelsbased small molecular gelator by supramolecular assembly, possessing excellent dynamic and reversible characteristic, have caused much concern. In this article, aggregation-induced emission-active fluorescence gels (AIE-gels) with chirality were developed by combining Cu nanoclusters (CuNCs) and natural amino acids, l-tryptophan (l-Trp) or d-Tryptophan (d-Trp). In DMSO/H2O mixed solvents, CuNCs can self-assemble to form intertwined fibersbased nanoparticles with numerous pores by introducing Zn2+. Fibers as second networks of heteronetwork structures are characterized with the participation of l-Trp or d-Trp for cross-linking to reinforce mechanical strength and chiral regulation of gel networks. Aggregation-induced emission enhancement (AIEE) of CuNCs endows the gels with excellent fluorescent properties by introducing solvents and gelation process. The fluorescent gels exhibit sufficient fluorescence intensity (FI) at -20 °C to -80 °C and possess sensitive responsibility including gel-sol transition and fluorescence behavior for stimuli of mechanical force, heating, pH, H2O2, and ethylene diamine tetraacetic acid (EDTA).
Collapse
Affiliation(s)
- Jin Yuan
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, China
| | - Wenna Wu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Chen Q, Liu Y, Liu J, Liu J. Liposome‐Boosted Peroxidase‐Mimicking Nanozymes Breaking the pH Limit. Chemistry 2020; 26:16659-16665. [DOI: 10.1002/chem.202004133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Qiaoshu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
- Centre for Eye and Vision Research 17W Hong Kong Science Park Hong Kong China
| |
Collapse
|
8
|
Poyton MF, Pullanchery S, Sun S, Yang T, Cremer PS. Zn 2+ Binds to Phosphatidylserine and Induces Membrane Blebbing. J Am Chem Soc 2020; 142:18679-18686. [PMID: 33078929 DOI: 10.1021/jacs.0c09103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, we show that Zn2+ binds to phosphatidylserine (PS) lipids in supported lipid bilayers (SLBs), forming a PS-Zn2+ complex with an equilibrium dissociation constant of ∼100 μM. Significantly, Zn2+ binding to SLBs containing more than 10 mol % PS induces extensive reordering of the bilayer. This reordering is manifest through bright spots of high fluorescence intensity that can be observed when the bilayer contains a dye-labeled lipid. Measurements using atomic force microscopy (AFM) reveal that these spots represent three-dimensional unilamellar blebs. Bleb formation is ion specific, inducible by exposing the bilayer to μM concentrations of Zn2+ but not Mg2+, Cu2+, Co2+, or Mn2+. Moreover, Ca2+ can induce some blebbing at mM concentrations but not nearly as effectively as Zn2+. The interactions of divalent metal cations with PS lipids were further investigated by a combination of vibrational sum frequency spectroscopy (VSFS) and surface pressure-area isotherm measurements. VSFS revealed that Zn2+ and Ca2+ were bound to the phosphate and carboxylate moieties on PS via contact ion pairing, dehydrating the lipid headgroup, whereas Mg2+ and Cu2+ were bound without perturbing the hydration of these functional groups. Additionally, Zn2+ was found to dramatically reduce the area per lipid in lipid monolayers, while Mg2+ and Cu2+ did not. Ca2+ could also reduce the area per lipid but only when significantly higher surface pressures were applied. These measurements suggest that Zn2+ caused lipid blebbing by decreasing the area per lipid on the side of the bilayer to which the salt was exposed. Such findings have implications for blebbing, fusion, oxidation, and related properties of PS-rich membranes in biological systems where Zn2+ concentrations are asymmetrically distributed.
Collapse
|
9
|
Wu GY, Shi X, Phan H, Qu H, Hu YX, Yin GQ, Zhao XL, Li X, Xu L, Yu Q, Yang HB. Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nat Commun 2020; 11:3178. [PMID: 32576814 PMCID: PMC7311404 DOI: 10.1038/s41467-020-16940-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/21/2020] [Indexed: 12/02/2022] Open
Abstract
Sophisticated mechanically interlocked molecules (MIMs) with interesting structures, properties and applications have attracted great interest in the field of supramolecular chemistry. We herein report a highly efficient self-assembly of heterometallic triangular necklace 1 containing Cu and Pt metals with strong antibacterial activity. Single-crystal X-ray analysis shows that the finely arranged triangular necklace 1 has two racemic enantiomers in its solid state with intriguing packing motif. The superior antibacterial activity of necklace 1 against both standard and clinically drug-resistant pathogens implies that the presence of Cu(I) center and platinum(II) significantly enhance the bacterium-binding/damaging activity, which is mainly attributed to the highly positively charged nature, the possible synergistic effect of heterometals in the necklace, and the improved stability in culture media. This work clearly discloses the structure-property relationships that the existence of two different metal centers not only facilitates successful construction of heterometallic triangular necklace but also endows it with superior nuclease properties and antibacterial activities. Precise assembly of heterometallic complexes is a challenge. Here, the authors design a heterometallic triangular necklace through a highly efficient threading-and-ring-closing approach driven by metal-ligand coordination, which shows strong bacterium-binding and cell wall/plasma membrane-disrupting capacity for killing bacterial cells.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Hoa Phan
- Vinh University, 182 LeDuan Street, Vinh, Vietnam
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| |
Collapse
|
10
|
Liu Y, Liu J. Growing a Nucleotide/Lanthanide Coordination Polymer Shell on Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11217-11224. [PMID: 31379173 DOI: 10.1021/acs.langmuir.9b00677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coating liposomes with a shell is a useful strategy to increase membrane stability and prevent leakage or fusion. Nucleotide/lanthanide coordination nanoparticles (NPs) are formed by a simple mixing at ambient conditions. Because some lipid headgroups contain lanthanide binding ligands, they may direct the growth of such coordination NPs. Herein, a gadolinium/adenosine monophosphate (Gd3+/AMP) shell was formed on liposomes (liposome@Gd3+/AMP) using lipids containing phosphoserine (PS) or cholinephosphate (CP) headgroups, while phosphocholine liposomes did not support the shell. Liposome binding Gd3+ is confirmed by transmission electron microscopy (TEM). The negatively charged CP and PS liposomes reversed to positive upon Gd3+ binding, while other metals such as Ca2+ and Zn2+ did not reverse the charge. Binding of Gd3+ did not leak the PS liposomes. Then, AMP was further added to cross-link Gd3+ on the liposome surface. A shell was formed as indicated by TEM, and the content inside the liposome remained for the PS liposomes. While adding Triton X-100 still induced leakage of the encapsulated liposomes, the shell protected the liposomes from leakage induced by ZnO NPs, suggesting a porous structure of the Gd3+/AMP shell which allowed penetration of Triton X-100 but not the larger ZnO NPs. This work provides a simple method to coat liposomes, and also offers a fundamental understanding of liposome adsorption of lanthanide ions.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
11
|
De SK, Kanwa N, Chakraborty A. Influence of Trivalent Metal Ions on Lipid Vesicles: Gelation and Fusion Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6429-6440. [PMID: 30983360 DOI: 10.1021/acs.langmuir.9b00682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this contribution, we report the interaction of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid vesicles with a series of trivalent metal ions of the same group, namely, Al3+, Ga3+, and In3+, to get a distinct view of the effect of size, effective charge, and hydration free energy of these metal ions on lipid vesicles. We employed steady-state and time-resolved spectroscopic techniques including time-resolved anisotropy measurement, confocal imaging, and dynamic light scattering (DLS) measurement to probe the interaction. Our study reveals that all of the three trivalent metal ions induce gelation in lipid vesicles by removing water molecules from the interfacial region. The extent of gelation induced by the metal ions follows the order of In3+ > Ga3+ ≥ Al3+. We explain this observation in light of different free-energy terms. Notably, the degree of interaction for trivalent metal ions is higher as compared to that for divalent metal ions at physiological pH (pH ∼ 7.0). Most importantly, we observe that unlike divalent metal ions, trivalent metal ions dehydrate the lipid vesicles even at lower pH. The DLS measurement and confocal imaging indicate that In3+ causes significant aggregation or fusion of the PC vesicles, while Al3+ and Ga3+ did not induce any aggregation at the experimental concentration. We employ Derjaguin-Landau-Vervey-Overbeek (DLVO) theory to explain the aggregation phenomena induced by In3+.
Collapse
Affiliation(s)
- Soumya Kanti De
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| | - Nishu Kanwa
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| | - Anjan Chakraborty
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| |
Collapse
|
12
|
Liposomes as models for membrane integrity. Biochem Soc Trans 2019; 47:919-932. [PMID: 31085615 DOI: 10.1042/bst20190123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
Biological membranes form the boundaries to cells. They are integral to cellular function, retaining the valuable components inside and preventing access of unwanted molecules. Many different classes of molecules demonstrate disruptive properties to the plasma membrane. These include alcohols, detergents and antimicrobial agents. Understanding this disruption and the mechanisms by which it can be mitigated is vital for improved therapeutics as well as enhanced industrial processes where the compounds produced can be toxic to the membrane. This mini-review describes the most common molecules that disrupt cell membranes along with a range of in vitro liposome-based techniques that can be used to monitor and delineate these disruptive processes.
Collapse
|
13
|
Wang X, Li X, Wang H, Zhang X, Zhang L, Wang F, Liu J. Charge and Coordination Directed Liposome Fusion onto SiO 2 and TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1672-1681. [PMID: 30558422 DOI: 10.1021/acs.langmuir.8b02979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
TiO2 and SiO2 are very useful materials for building biointerfaces. A particularly interesting aspect is their interaction with lipid bilayers. Many past research efforts focused on phosphocholine (PC) lipids, which form supported lipid bilayers (SLB) on SiO2 at physiological conditions but are adsorbed as intact liposomes on TiO2. Low pH was required to form PC SLBs on TiO2. This work intends to understand the surface forces and chemistry responsible for such differences. Two charge neutral lipids: 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 2-((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl ethyl phosphate (DOCPe) and two negatively charged lipids: 1,2-dioleoyl- sn-glycero-3-phospho-l-serine (DOPS) and 2-((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl hydrogen phosphate (DOCP) were used. Using calcein leakage assays, adsorption measurement, cryo-TEM, and washing, we concluded that charge is the dominating factor on SiO2. The two neutral lipids form SLB on SiO2 at pH 3 and 7, but the two negatively charged ones cannot form. On TiO2, both charge and coordination chemistry are important. The two anionic lipids formed SLB from pH 3 to 10. DOCP had stronger affinity than DOPS likely due to the tighter terminal phosphate binding of the former. The two neutral liposomes formed SLB only at pH 3, where phosphate interaction and van der Waals force are deemed important. The pH 3 prepared TiO2 DOPC SLBs are destabilized at neutral pH, indicating the reversible nature of the interaction. This work has provided new insights into two important materials interacting with common liposomes, which are important for reproducible biosensing, device fabrication, and drug delivery applications.
Collapse
Affiliation(s)
- Xiaoshun Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaoqiu Li
- Center of Intervention Radiology, Center of Precise Medicine , Zhuhai People's Hospital , No. 79 Kangning Road , Zhuhai , Guangdong Province 519000 , China
| | - Hui Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaohan Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Lei Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Feng Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
14
|
Liu Y, Liu J. Cu 2+-Directed Liposome Membrane Fusion, Positive-Stain Electron Microscopy, and Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7545-7553. [PMID: 29804456 DOI: 10.1021/acs.langmuir.8b00864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural lipid headgroups contain a few types of metal ligands, such as phosphate, amine, and serine, which interact with metal ions differently. Herein, we studied the binding between Cu2+ and liposomes with four types of headgroups: phosphocholine (PC), phosphoglycerol (PG), phosphoserine (PS), and cholinephosphate (CP). Using fluorescently headgroup-labeled liposomes, Cu2+ strongly quenched the CP and PS liposomes, whereas quenching of PC and PG was weaker. Dynamic light scattering indicated that all of the four liposomes aggregated at high Cu2+ concentrations, and ethylenediaminetetraacetic acid (EDTA) only restored the original size of the PC liposome, implying fusion of the other three types of liposomes. The leakage tests revealed that the integrity of PC liposomes was not affected by Cu2+, but the other three liposomes leaked. Under TEM, all of the liposomes show a positive-stain feature in the presence of Cu2+ and Cu2+-stained individual liposomes with a short incubation time (<1 min). The oxidative catalytic property of Cu2+ was also tested, and a tight binding by the PS liposome inhibited the activity of Cu2+. Finally, a model of interaction for each liposome was proposed, and each one has a different metal-binding and interaction mechanism.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|