1
|
Electrocatalytic oxidation of formic acid on Pd/CNTs nanocatalysts synthesized in special “non-aqueous” system. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Ishii Y, Al-Zubaidi A, Taniguchi Y, Jindo S, Kawasaki S. Single-walled carbon nanotubes as a reducing agent for the synthesis of a Prussian blue-based composite: a quartz crystal microbalance study. NANOSCALE ADVANCES 2022; 4:510-520. [PMID: 36132684 PMCID: PMC9417717 DOI: 10.1039/d1na00739d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 06/16/2023]
Abstract
We investigated the synthesis mechanism of Prussian blue (PB) crystals supported on single-walled carbon nanotubes (SWCNTs), by performing in situ quartz crystal microbalance (QCM) measurements to probe the change in the electrode mass during the reaction, and using photoirradiation at designated stages of the process. We found that in contrast to existing hypotheses, light irradiation played no role in the synthesis process of Prussian blue on SWCNTs. On the other hand, the number of electrons transferred per one mole of the obtained product, and the number of electrons transferrable from SWCNTs, calculated from the density of states (DOS) of the SWCNTs in the sample, both favor the hypothesis of the reaction being triggered by direct electron transfer from SWCNTs to Fe3+, which occurs because of the energy difference between the Fermi level of SWCNTs and redox potential of Fe3+ ions.
Collapse
Affiliation(s)
- Yosuke Ishii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Ayar Al-Zubaidi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Yoshimitsu Taniguchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Shinya Jindo
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Shinji Kawasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
3
|
Yin S, Wang J, Zhu Y, Song L, Wu T, Zhang Z, Zhang X, Li F, Chen G. A novel uric acid biosensor based on regular Prussian blue nanocrystal/ upright graphene oxide array nanocomposites. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411018666220117155419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
Regular Prussian blue nanocrystals (RPB) were grown upright on graphene oxide flakes (GO), which were on the surface of a custom screen-printed carbon electrode (SPCE), using a spray method assisted by a constant magnetic field (CMF).
Method:
After immobilizing uricase, the uric acid biosensor Uricase/RPB/CMF-GO/SPCE was obtained. The detection range of the sensor response to UA was 0.005~2.525 mM, and the detection limit was as low as 3.6 μM. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that compared to amorphous electrodeposited Prussian blue (EDPB), RPB more favorably accelerated electron transport.
Result:
This novel uric acid biosensor exhibits high sensitivity over, a wide concentration range, strong anti- interference ability, and good stability and reproducibility.
Conclusion:
Thus, it has good application prospects for determining uric acid in physiological samples
Collapse
Affiliation(s)
- Shiyu Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Jikui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Yongbao Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Lingyu Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Tingxia Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Zhiyi Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Xianbo Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Fan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| | - Guosong Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China; bCollege of chemical engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Jiang Y, Yang Y, Shen L, Ma J, Ma H, Zhu N. Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal Chem 2021; 94:297-311. [PMID: 34874165 DOI: 10.1021/acs.analchem.1c04420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China.,Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yupeng Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
5
|
Yang P, Zhou Z, Zheng T, Gu C, Gong X, Zhang Y, Xie Y, Yang N, Fei J. A novel strategy to synthesize Pt/CNTs nanocatalyst with highly improved activity for methanol electrooxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
One-step synthesis in deep eutectic solvents of Pt3Sn1-SnO2 alloy nanopore on carbon nanotubes for boosting electro-catalytic methanol oxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Luo Z, Xiang D, Pei X, Wang L, Zhao Z, Sun W, Ran M, Dai T. Enhanced Performance of Palladium Catalyst Confined Within Carbon Nanotubes for Heck Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03577-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Feng D, Zhang K, Lu Y, Chen J, Wei Y. Gold Microstructures/Polyaniline/Reduced Graphene Oxide/Prussian Blue Composite as Stable Redox Matrix for Label-free Electrochemical Immunoassay of α-Fetoprotein. ANAL SCI 2020; 36:1501-1505. [PMID: 32830158 DOI: 10.2116/analsci.20p145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 08/09/2023]
Abstract
Sensitivity amplification strategies in label-free electrochemical immunosensors are mainly limited by redox molecules leaking and degradation of electrical conductivity caused by layers of decoration. Herein, a relatively stable and sensitive label-free electrochemical immunosensor based on a hierarchically flower-like gold microstructures/polyaniline/reduced graphene oxide/prussian blue (HFG/PANI/rGO/PB) composite modified electrode was stepwise fabricated for determination of α-fetoprotein (AFP). In this process, the effect of PANI and rGO on the proposed immunosensor was studied. In detail, PANI/rGO due to the unique electrochemical properties can effectively prevent PB leakage and form a stable sensing platform, which causes sensitive responsiveness and thus a more satisfied detection limit. Meanwhile, the HFG with good biological compatibility can effectively immobilize plenty of antibodies. Under optimal conditions, the HFG/PANI/rGO/PB modified immunosensor exhibited an excellent linearity (0.01 - 30 ng/mL) and a low detection limit (0.003 ng/mL) (S/N = 3), suitable specificity as well as stability and reproducibility towards AFP. The present work offered a promising platform for clinical hepatocellular carcinoma diagnostics.
Collapse
Affiliation(s)
- Dexiang Feng
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Ke Zhang
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, China
| | - Yong Lu
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, China
| | - Jiexia Chen
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, China
| | - Yan Wei
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| |
Collapse
|
9
|
Li ZQ, Wu MY, Ding XL, Wu ZQ, Xia XH. Reversible Electrochemical Tuning of Ion Sieving in Coordination Polymers. Anal Chem 2020; 92:9172-9178. [DOI: 10.1021/acs.analchem.0c01504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|