1
|
Iravani S. Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol 2023; 49:598-610. [PMID: 35930235 DOI: 10.1080/1040841x.2022.2108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Today, with the intensity of antibiotic abuse and self-medication, the need for the use of novel systems with high efficiency and biosafety for targeted drug delivery against antibiotic-resistant bacteria and their infections should be highly considered by researchers. Silica-based nanosystems with unique physicochemical properties such as large surface area, tuneable pore diameter, drug loading capacity, controlled particle size/morphology, and good biocompatibility are attractive candidates against antibiotic-resistant bacteria and pathogenic viruses. They can be loaded with antiviral and antimicrobial drugs or molecules through their exclusive internal porous structures or different surface linkers. In this context, smart nanosystems can be produced via suitable surface functionalization/modification with a variety of functional groups to act against different clinical pathogenic microbes or viruses, offering great opportunities for controlling and treating various infections. However, important criteria such as the ability to degrade, biocompatibility, biodegradability, cytotoxicity, stability, clearance from targeted organs should be systematically analysed to develop nanosystems or nanocarriers with high efficiency and multifunctionality. Herein, recent advancements pertaining to the application of silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses are deliberated, focussing on important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Lin CY, Yang CM, Lindén M. Dissolution and morphology evolution of mesoporous silica nanoparticles under biologically relevant conditions. J Colloid Interface Sci 2022; 608:995-1004. [PMID: 34785474 DOI: 10.1016/j.jcis.2021.09.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022]
Abstract
Mesoporous silica nanoparticles (MSN) are promising drug vectors due to their high drug loading capacities, degradability under biologically relevant conditions. The dissolution of MSN has been the focus of several recent studies, most of which have, however, been carried out in the absence of proteins, and do therefore not reflect the conditions prevailing during in vitro or in vivo administration of the particles. Furthermore, typically the dissolution studies are limited with respect to the range of MSN concentrations applied. Here, we report results related to the dissolution kinetics and structural particle evolution for MCM-48 MSN carried out in the presence of proteins, and where the particle concentration has been used as a parameter to cover typical concentrations used in in vitro and in vivo studies involving MSNs. Proteins adsorbing to the MSN surface form a diffusion limiting layer that leads to the intermediate formation of core-shell structured particles upon dissolution. Here, the protein concentration controls the kinetics of this process, as the amount of protein adsorbing to the MSN increase with increasing protein concentration. The results thus also imply that the MSN dissolution kinetics is faster under normally applied in vitro conditions as compared to what can be expected under full serum conditions.
Collapse
Affiliation(s)
- Chih-Yu Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Mika Lindén
- University of Ulm, Institute of Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| |
Collapse
|
3
|
Pal N, Lee JH, Cho EB. Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2122. [PMID: 33113856 PMCID: PMC7692592 DOI: 10.3390/nano10112122] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
Abstract
The outstanding journey towards the investigation of mesoporous materials commences with the discovery of high surface area porous silica materials, named MCM-41 (Mobil Composition of Matter-41) according to the inventors' name Mobile scientists in the United States. Based on a self-assembled supramolecular templating mechanism, the synthesis of mesoporous silica has extended to wide varieties of silica categories along with versatile applications of all these types in many fields. These silica families have some extraordinary structural features, like highly tunable nanoscale sized pore diameter, good Brunauer-Emmett-Teller (BET) surface areas, good flexibility to accommodate different organic and inorganic functional groups, metals etc., onto their surface. As a consequence, thousands of scientists and researchers throughout the world have reported numerous silica materials in the form of published articles, communication, reviews, etc. Beside this, attention is also given to the morphology-oriented synthesis of silica nanoparticles and their significant effects on the emerging fields of study like catalysis, energy applications, sensing, environmental, and biomedical research. This review highlights a consolidated overview of those morphology-based mesoporous silica particles, emphasizing their syntheses and potential role in many promising fields of research.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Jun-Hyeok Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Eun-Bum Cho
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|
4
|
Selvarajan V, Obuobi S, Ee PLR. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front Chem 2020; 8:602. [PMID: 32760699 PMCID: PMC7374024 DOI: 10.3389/fchem.2020.00602] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
The rapid emergence of drug resistance continues to outpace the development of new antibiotics in the treatment of infectious diseases. Conventional therapy is currently limited by drug access issues such as low intracellular drug accumulations, drug efflux by efflux pumps and/or enzymatic degradation. To improve access, targeted delivery using nanocarriers could provide the quantum leap in intracellular drug transport and retention. Silica nanoparticles (SiNPs) with crucial advantages such as large surface area, ease-of-functionalization, and biocompatibility, are one of the most commonly used nanoparticles in drug delivery applications. A porous variant, called the mesoporous silica nanoparticles (MSN), also confers additional amenities such as tunable pore size and volume, leading to high drug loading capacity. In the context of bacterial infections, SiNPs and its variants can act as a powerful tool for the targeted delivery of antimicrobials, potentially reducing the impact of high drug dosage and its side effects. In this review, we will provide an overview of SiNPs synthesis, its structural proficiency which is critical in loading and conjugation of antimicrobials and its role in different antimicrobial applications with emphasis on intracellular drug targeting in anti-tuberculosis therapy, nitric oxide delivery, and metal nanocomposites. The role of SiNPs in antibiofilm coatings will also be covered in the context of nosocomial infections and surgical implants.
Collapse
Affiliation(s)
- Vanitha Selvarajan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| |
Collapse
|
5
|
Iturrioz-Rodríguez N, Correa-Duarte MÁ, Valiente R, Fanarraga ML. Engineering Sub-Cellular Targeting Strategies to Enhance Safe Cytosolic Silica Particle Dissolution in Cells. Pharmaceutics 2020; 12:pharmaceutics12060487. [PMID: 32481488 PMCID: PMC7356774 DOI: 10.3390/pharmaceutics12060487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica particles (MSP) are major candidates for drug delivery systems due to their versatile, safe, and controllable nature. Understanding their intracellular route and biodegradation process is a challenge, especially when considering their use in neuronal repair. Here, we characterize the spatiotemporal intracellular destination and degradation pathways of MSP upon endocytosis by HeLa cells and NSC-34 motor neurons using confocal and electron microscopy imaging together with inductively-coupled plasma optical emission spectroscopy analysis. We demonstrate how MSP are captured by receptor-mediated endocytosis and are temporarily stored in endo-lysosomes before being finally exocytosed. We also illustrate how particles are often re-endocytosed after undergoing surface erosion extracellularly. On the other hand, silica particles engineered to target the cytosol with a carbon nanotube coating, are safely dissolved intracellularly in a time scale of hours. These studies provide fundamental clues for programming the sub-cellular fate of MSP and reveal critical aspects to improve delivery strategies and to favor MSP safe elimination. We also demonstrate how the cytosol is significantly more corrosive than lysosomes for MSP and show how their biodegradation is fully biocompatible, thus, validating their use as nanocarriers for nervous system cells, including motor neurons.
Collapse
Affiliation(s)
- Nerea Iturrioz-Rodríguez
- Grupo de Nanomedicina, Instituto Valdecilla-IDIVAL, Herrera Oria s/n, 39011 Santander, Spain;
- Correspondence: (N.I.-R.); (M.L.F.); Tel.: +34-942315515 (ext. 74101) (N.I.-R.); +34-942202067 (M.L.F.)
| | - Miguel Ángel Correa-Duarte
- Biomedical Research Centre (CINBIO), Universidade de Vigo, 36310 Vigo, Spain;
- Southern Galicia Institute of Health Research (IISGS), and CIBERSAM, 36213 Vigo, Spain
| | - Rafael Valiente
- Grupo de Nanomedicina, Instituto Valdecilla-IDIVAL, Herrera Oria s/n, 39011 Santander, Spain;
- Departments of Applied Physics, University of Cantabria, 39005 Santander, Spain
| | - Mónica L. Fanarraga
- Grupo de Nanomedicina, Instituto Valdecilla-IDIVAL, Herrera Oria s/n, 39011 Santander, Spain;
- Molecular Biology, University of Cantabria, 39011 Santander, Spain
- Correspondence: (N.I.-R.); (M.L.F.); Tel.: +34-942315515 (ext. 74101) (N.I.-R.); +34-942202067 (M.L.F.)
| |
Collapse
|
6
|
Mitarotonda R, Giorgi E, Desimone MF, De Marzi MC. Nanoparticles and Immune Cells. Curr Pharm Des 2019; 25:3960-3982. [DOI: 10.2174/1381612825666190926161209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles have gained ground in several fields. However, it is important to consider their potentially
hazardous effects on humans, flora, and fauna. Human exposure to nanomaterials can occur unintentionally
in daily life or in industrial settings, and the continuous exposure of the biological components (cells, receptors,
proteins, etc.) of the immune system to these particles can trigger an unwanted immune response (activation or
suppression). Here, we present different studies that have been carried out to evaluate the response of immune
cells in the presence of nanoparticles and their possible applications in the biomedical field.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| | - Martín F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica, Buenos Aires, Argentina
| | - Mauricio C. De Marzi
- Laboratorio de Inmunologia, Instituto de Ecologia y Desarrollo Sustentable (INEDES) UNLu-CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Perioli L, Pagano C, Ceccarini MR. Current Highlights About the Safety of Inorganic Nanomaterials in Healthcare. Curr Med Chem 2019; 26:2147-2165. [DOI: 10.2174/0929867325666180723121804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
Abstract
:
In recent years inorganic materials are largely present in products intended for
health care. Literature gives many examples of inorganic materials used in many healthcare
products, mainly in pharmaceutical field.
:
Silver, zinc oxide, titanium oxide, iron oxide, gold, mesoporous silica, hydrotalcite-like compound
and nanoclays are the most common inorganic materials used in nanosized form for
different applications in the health field. Generally, these materials are employed to realize
formulations for systemic use, often with the aim to perform a specific targeting to the pathological
site. The nanometric dimensions are often preferred to obtain the cellular internalization
when the target is localized in the intracellular space.
:
Some materials are frequently used in topical formulations as rheological agents, adsorbents,
mattifying agents, physical sunscreen (e.g. zinc oxide, titanium dioxide), and others.
:
Recent studies highlighted that the use of nanosized inorganic materials can represent a risk
for health. The very small dimension (nanometric) until a few years ago represented a fundamental
requirement; however, it is currently held responsible for the inorganic material toxicity.
This aspect is very important to be considered as actually numerous inorganic materials
can be found in many products available in the market, often dedicated to infants and children.
These materials are used without taking into account their dimensional properties with
increased risk for the user/patient.
:
This review deals with a deep analysis of current researches documenting the toxicity of
nanometric inorganic materials especially those largely used in products available in the market.
Collapse
Affiliation(s)
- Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
8
|
Iturrioz-Rodríguez N, Correa-Duarte MA, Fanarraga ML. Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles. Int J Nanomedicine 2019; 14:3389-3401. [PMID: 31190798 PMCID: PMC6512630 DOI: 10.2147/ijn.s198848] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
The implementation of nanotechnology in medicine has opened new research horizons particularly in the field of therapeutic delivery. Mesoporous silica particles have emerged as biocompatible drug delivery systems with an enormous potential in the treatment of cancer among many other pathologies. In this review, we focus on the unique properties of these particles as chemotherapy delivery carriers. Here, we summarize the general characteristics of these nanomaterials - including their physicochemical properties and customizable surfaces - different stimuli that can be used to trigger targeted drug release, biocompatibility and finally, the drawbacks of these types of nanomaterials, highlighting some of the most important features of mesoporous silica nanoparticles in drug delivery.
Collapse
Affiliation(s)
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS), Vigo36310, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, Vigo36310, Spain
| | - Mónica L Fanarraga
- Nanomedicine Group, University of Cantabria – IDIVAL, Santander, 39011, Spain
| |
Collapse
|