1
|
Roebroek T, Van Roy W, Roth S, Chacon Orellana L, Luo Z, El Jerrari Y, Arnett C, Claes K, Ha S, Jans K, Labie R, Lin Z, Obst M, Origuella D, Pham V, Van Bellinghen F, Girikumar Krishna AV, Vaezzadeh E, Vanhove W, Van Duppen J, Wang G, Willems S, Peumans P, Jayapala M, Stakenborg T. Continuous, Label-Free Phenotyping of Single Cells Based on Antibody Interaction Profiling in Microfluidic Channels. Anal Chem 2025; 97:8975-8983. [PMID: 40220345 DOI: 10.1021/acs.analchem.5c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Flow cytometry commonly utilizes fluorescence labeling and extensive sample preparation to detect specific cell surface markers, making analysis under native cell conditions impractical. In this work, a label-free flow cytometry technique is presented that spatiotemporally resolves cell-surface interactions in antibody-coated microfluidic channels. Using computational imaging, numerous cells are tracked across a large field of view (12 × 3 mm2) and the resulting motion profiles are used for phenotypic cell characterization. As proof-of-principle, experiments targeting T-cell receptor CD8 are performed directly on cell cultures. Individual T-cells are successfully tracked in 98% cases for flow velocities of 1-3 mm·s-1. In 14 μm high channels coated with only nonspecific antibodies, both CD8-positive SUP-T1 and CD8-negative Jurkat cells exhibit mostly constant velocities. In contrast, using channels functionalized with CD8-specific antibodies, numerous CD8-positive cells but not CD8-negative cells show temporary delays in motion linked to surface interaction. Cell classification based on the observed interactions results in a clear contrast ratio of 23.9 ± 11.6 (mean ± standard deviation) between SUP-T1 and Jurkat cells at 1 mm·s-1. The contrast decreases at higher flow velocities as fewer cells interact due to the increased hydrodynamic lift. Our results affirm our method's ability to differentiate cells without prior labeling or sample preparation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Riet Labie
- imec, Kapeldreef 75, 3001 Leuven, Belgium
| | - Ziduo Lin
- imec, Kapeldreef 75, 3001 Leuven, Belgium
| | | | | | - Van Pham
- imec, Kapeldreef 75, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Obst M, Vos R, Steylaerts T, Ha S, Hanifa R, Mana L, Conard T, Hoflijk I, Jans K. Mixed Functional Siloxane Monolayers Prepared via Chemical Vapor Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19731-19738. [PMID: 39231369 DOI: 10.1021/acs.langmuir.4c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Functionalizing surfaces with self-assembled monolayers (SAMs) allows to efficiently bind bioreceptors, for instance, by bio-orthogonal click reactions, which is useful in biosensor fabrication. Control of the bioreceptor concentration on the surface can be achieved by coating an SAM mixture consisting of a functional SAM, which binds the bioreceptor, and a nonfunctional SAM for dilution. In this work, a novel vapor-based coating approach for the preparation of mixed SAM coatings is presented. Sequential evaporation of the SAM precursors, i.e., fluoroalkyl and azidoalkyl silanes, by heating under reduced pressure leads to the formation of a two-dimensional siloxane monolayer network on silicon oxide. The presence of both SAMs in the mixed coatings is confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. As verified by atomic force microscopy, the morphologies of the coatings and the uncoated silicon oxide substrates are similar, indicating a conformal coating. Functionality of the SAM mixture is demonstrated by a reaction with a fluorescent dye, illustrating its potential application in biosensors.
Collapse
Affiliation(s)
| | - Rita Vos
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | | | | | | | - Luca Mana
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | | | | | | |
Collapse
|
3
|
Rouvière L, Al-Hajj N, Hunel J, Aupetit C, Buffeteau T, Vellutini L, Genin E. Silane-Based SAMs Deposited by Spin Coating as a Versatile Alternative Process to Solution Immersion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6464-6471. [PMID: 35544953 DOI: 10.1021/acs.langmuir.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalization of silica surfaces with silane-based self-assembled monolayers (SAMs) is widely used in material sciences to tune surface properties and introduce terminal functional groups enabling subsequent chemical surface reactions and immobilization of (bio)molecules. Here, we report on the synthesis of four organotrimethoxysilanes with various molecular structures and we compare their grafting by spin coating with the one performed by the conventional solution immersion method. Strikingly, this study clearly demonstrates that the spin coating technique is a versatile, fast, and more convenient alternative process to prepare robust, smooth, and homogeneous SAMs with similar properties and quality as those deposited via immersion. SAMs were characterized by PM-IRRAS, AFM, and wettability measurements. SAMs can undergo several chemical surface modifications, and the reactivity of amine-terminated SAM was confirmed by PM-IRRAS and fluorescence measurements.
Collapse
Affiliation(s)
- Lisa Rouvière
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Nisreen Al-Hajj
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
- Department of Chemistry, Faculty of Science, An-Najah National University, P.O. Box 7, 400 Nablus, Palestine
| | - Julien Hunel
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Christian Aupetit
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Thierry Buffeteau
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Luc Vellutini
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Emilie Genin
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
4
|
Cui F, Marbach S, Zheng JA, Holmes-Cerfon M, Pine DJ. Comprehensive view of microscopic interactions between DNA-coated colloids. Nat Commun 2022; 13:2304. [PMID: 35484104 PMCID: PMC9051097 DOI: 10.1038/s41467-022-29853-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
The self-assembly of DNA-coated colloids into highly-ordered structures offers great promise for advanced optical materials. However, control of disorder, defects, melting, and crystal growth is hindered by the lack of a microscopic understanding of DNA-mediated colloidal interactions. Here we use total internal reflection microscopy to measure in situ the interaction potential between DNA-coated colloids with nanometer resolution and the macroscopic melting behavior. The range and strength of the interaction are measured and linked to key material design parameters, including DNA sequence, polymer length, grafting density, and complementary fraction. We present a first-principles model that screens and combines existing theories into one coherent framework and quantitatively reproduces our experimental data without fitting parameters over a wide range of DNA ligand designs. Our theory identifies a subtle competition between DNA binding and steric repulsion and accurately predicts adhesion and melting at a molecular level. Combining experimental and theoretical results, our work provides a quantitative and predictive approach for guiding material design with DNA-nanotechnology and can be further extended to a diversity of colloidal and biological systems. A quantitative prediction of DNA-mediated interactions between colloids is crucial to the design of colloidal structures for optical applications. Cui et al. measure the interaction potential with nanometer resolution and propose a theory to accurately predict adhesion and melting at a molecular level.
Collapse
Affiliation(s)
- Fan Cui
- Department of Physics, New York University, New York, NY, USA
| | - Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes, Interfaciaux, F-75005, Paris, France
| | | | | | - David J Pine
- Department of Physics, New York University, New York, NY, USA. .,Department of Chemical & Biomolecular Engineering, New York University, New York, NY, USA.
| |
Collapse
|
5
|
Vandenbroucke SST, Nisula M, Petit R, Vos R, Jans K, Vereecken PM, Dendooven J, Detavernier C. An IR Spectroscopy Study of the Degradation of Surface Bound Azido-Groups in High Vacuum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12608-12615. [PMID: 34669405 DOI: 10.1021/acs.langmuir.1c01903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlled surface functionalization with azides to perform on surface "click chemistry" is desired for a large range of fields such as material engineering and biosensors. In this work, the stability of an azido-containing self-assembled monolayer in high vacuum is investigated using in situ Fourier transform infrared spectroscopy. The intensity of the antisymmetric azide stretching vibration is found to decrease over time, suggesting the degradation of the azido-group in high vacuum. The degradation is further investigated at three different temperatures and at seven different nitrogen pressures ranging from 1 × 10-6 mbar to 5 × 10-3 mbar. The degradation is found to increase at higher temperatures and at lower nitrogen pressures. The latter supporting the theory that the degradation reaction involves the decomposition into molecular nitrogen. For the condition with the highest degradation detected, only 63% of azides is found to remain at the surface after 8 h in vacuum. The findings show a significant loss in control of the surface functionalization. The instability of azides in high vacuum should therefore always be considered when depositing or postprocessing azido-containing layers.
Collapse
Affiliation(s)
- Sofie S T Vandenbroucke
- Department of Solid State Sciences, CoCooN group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium
- Interuniversity Micro Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
| | - Mikko Nisula
- Department of Solid State Sciences, CoCooN group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium
| | - Robin Petit
- Department of Solid State Sciences, CoCooN group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium
| | - Rita Vos
- Interuniversity Micro Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
| | - Karolien Jans
- Interuniversity Micro Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
| | - Philippe M Vereecken
- Interuniversity Micro Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium
| |
Collapse
|
6
|
Wang L, Schubert US, Hoeppener S. Surface chemical reactions on self-assembled silane based monolayers. Chem Soc Rev 2021; 50:6507-6540. [PMID: 34100051 DOI: 10.1039/d0cs01220c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this review, we aim to update our review "Chemical modification of self-assembled silane-based monolayers by surface reactions" which was published in 2010 and has developed into an important guiding tool for researchers working on the modification of solid substrate surface properties by chemical modification of silane-based self-assembled monolayers. Due to the rapid development of this field of research in the last decade, the utilization of chemical functionalities in self-assembled monolayers has been significantly improved and some new processes were introduced in chemical surface reactions for tailoring the properties of solid substrates. Thus, it is time to update the developments in the surface functionalization of silane-based molecules. Hence, after a short introduction on self-assembled monolayers, this review focuses on a series of chemical reactions, i.e., nucleophilic substitution, click chemistry, supramolecular modification, photochemical reaction, and other reactions, which have been applied for the modification of hydroxyl-terminated substrates, like silicon and glass, which have been reported during the last 10 years.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstr. 10, 07743 Jena, Germany
| | | | | |
Collapse
|
7
|
Santermans S, Schanovsky F, Gupta M, Hellings G, Heyns M, Van Roy W, Martens K. The Significance of Nonlinear Screening and the pH Interference Mechanism in Field-Effect Transistor Molecular Sensors. ACS Sens 2021; 6:1049-1056. [PMID: 33496586 DOI: 10.1021/acssensors.0c02285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrolyte screening is well known for its detrimental impact on the sensitivity of liquid-gated field-effect transistor (FET) molecular sensors and is mostly described by the linearized Debye-Hückel model. However, charged and pH-sensitive FET sensing surfaces can limit the FET molecular sensitivity beyond the Debye-Hückel screening formalism. Pre-existing surface charges can lead to the breakdown of Debye-Hückel screening and induce enhanced nonlinear Poisson-Boltzmann screening. Moreover, the charging of the pH-sensitive surface groups interferes with biomolecule sensing resulting in a pH interference mechanism. With analytical equations and TCAD simulations, we highlight that the Debye-Hückel approximation can underestimate screening and overestimate FET molecular sensitivity by more than an order of magnitude. Screening strengthens significantly beyond Debye-Hückel in the proximity of even moderately charged surfaces and biomolecule charge densities (≥1 × 1012 q/cm2). We experimentally show the strong impact of both nonlinear screening and the pH interference effect on charge-based biomolecular sensing using a model system based on the covalent binding of single-stranded DNA on silicon FET sensors. The DNA signal increases from 24 mV at pH 7 to 96 mV at pH 3 in 1.5 mM PBS for a DNA density of 7 × 1012 DNA/cm2. Our model quantitatively explains the signal's pH dependence with roughly equal nonlinear screening and pH interference contributions. This work shows the importance of reducing the net charge and the pH sensitivity of the sensing surface to improve molecular sensing. Therefore, tailoring the gate dielectric and functional layer of FET sensors is a promising route to strong silicon FET molecular sensitivity boosts.
Collapse
Affiliation(s)
- Sybren Santermans
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Department of Materials Engineering, University of Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Franz Schanovsky
- Global TCAD Solutions GmbH, Bösendorferstraße 1/12, 1010 Wien, Austria
| | - Mihir Gupta
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | | | - Marc Heyns
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Department of Materials Engineering, University of Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | | | | |
Collapse
|
8
|
Mousli Y, Rouvière L, Traboulsi I, Hunel J, Buffeteau T, Heuzé K, Vellutini L, Genin E. Hydrosilylation of Azide-Containing Olefins as a Convenient Access to Azidoorganotrialkoxysilanes for Self-Assembled Monolayer Elaboration onto Silica by Spin Coating. ChemistrySelect 2018. [DOI: 10.1002/slct.201800858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yannick Mousli
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Lisa Rouvière
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Iman Traboulsi
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Julien Hunel
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | | | - Karine Heuzé
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Luc Vellutini
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| | - Emilie Genin
- ISM, UMR 5255 CNRS; University of Bordeaux; F-33400 Talence France
| |
Collapse
|